

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2000 by NextMonet, Inc.

NextMonet
Smart Browse
Enhancements and Artist
Search
Functional Specifications

Jack Hodges
Andrew Stevko
January 19, 2001

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2000 by NextMonet, Inc.

- 1 -

Abstract

This document serves to define the basic functional and user requirements for enhancing
the SmartBrowse search utility. This project will consist of modifications to the following
components: Custom Search page, Thumbnail page, Working Page, and the
SmartBrowse application layer. In addition, an enhancement will be introduced to allow
searching for artists rather than art objects.

The requirements for the major tools will be specified by the combination of the functional
use cases for the catalog model, the user interface (UI) elements, and the storyboard of
pages that will implement the use cases pertinent to the catalog display and functionality.

Objective

This project has two objectives, to make browsing for art: 1) effective, and 2) painless. By
effective, we mean that browsing via search criterion needs to return highly relevant art
objects, and by painless, we mean to reduce the number of operations a visitor must apply
to find a desirable object.

Overall Requirements

The project objective can be met by considering the following nine functional
requirements:

• Provide the SmartBrowse component with the ability to re-order the art objects
immediately beyond the art object currently in focus. This differs from the current
behavior of re-ordering art objects that were never displayed. This should make
the benefits of SmartBrowse more identifiable.

• Provide the SmartBrowse component with the ability to start a new search with
every explicit ranking, in addition to the cumulative mechanism currently used.
This will provide users who wish to browse an immediate response, while
allowing users who want a focused search to locate items they like over a longer
browse session.

• Modify the weighting on user’s keyword selection so that those objects with
selected keywords are primary to other weights. That is, the selected category will
be ordered first in the sorted list.

• Change the Keyword constraints ordering within the Custom Search page to
better reflect the relationships between them.

• Persist the filters on the custom search page.
• Provide an option whereby registered users can save their search criterion as well

as their page settings across sessions.
• Make the response to rating an art object the display of the thumbnail page.
• Introduce new metrics for rating an art object subject, style, color, medium, and all
• Introduce new SmartBrowse constraining criteria to allow for “Search for Artists”.

This criterion will be specified on the Custom Search page and will most impact
the SmartBrowse component.

SMARTBROWSE PROJECT FUNCTIONAL SPECIFICATION

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2000 by NextMonet, Inc.

- 2 -

Components Impacted

Three pages and one internal component are directly affected by this project.

1) Custom Search Page: This interface currently allows the user to select filters to limit
the result set along with keywords to weight the result set by. This page will be
modified by: (a) ordering the filters presented, (b) persisting the filters between
searches in the same way that keywords are persisted, (c) re-evaluation of the layout
of controls, and (d) the introduction of the Search for Artists constraint. The affected
webpage component is:

“jhtml/search/detailedSearch.jhtml”

2) Thumbnail Browsing Page: This should be nearly identical in logic and overall
design to the current Thumbnail Browsing page that focuses on art objects. The
difference is that, once clicked, the redirection will be to the artists’ portfolio rather than
to the working page. The closest match in terms of existing pages is the
suggestions.jhtml page. The affected webpage component is:

“jhtml/search/searchResults.jhtml”

3) Working Page: This interface currently allows the user to rate an art object in 5
discrete/subjective values, and then the keywords associated with this art object are
modified to account for the rating, and all art objects in the collection are reordered by
the new ranking. This page will be modified to allow the user to rate an art object
along five metrics or to return to browsing. Each of the five metrics, which are: (a)
subject, (b) style, (c) color, (d) medium, and (e) all (i.e, all keywords in the selected
artwork, as it is at present), are forms of positive rating. The ‘back’ button is a form of
negative rating. The user will be provided with an option to use a cumulative session
or an immediate response (on the custom search page, but maybe eventually in their
profile; the default will be set experimentally). When a judgement is made, the user is
immediately returned to browsing thumbnails. The cumulative session will continue to
behave as it does now. The immediate session will create a new session with the
attribute sorting of the current filters and keywords. The user will be able to toggle
between these browse modes at will. The affected webpage component is:

“jhtml/art/artImage.jhtml”

4) SmartBrowse: The information specified within the Custom Search page is used by
the SmartBrowse component to produce a sorted collection of the art objects that
satisfy the filters and rank the keywords. This component will undergo the following
major and minor modifications:

• Change sorting boundaries to affect objects immediately after the object in
focus.

• Allow for additional criteria that will produce the Search by Artists behavior
desired. The sort will remain the same, but after the sort, another sort will be
performed to restrict the art objects to one per artist.

SMARTBROWSE PROJECT FUNCTIONAL SPECIFICATION

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2000 by NextMonet, Inc.

- 3 -

• Introduce an API to allow for ranking by the 5 metrics enumerated above.

SmartBrowse Criteria

The following criteria are to be used within the SmartBrowse component to produce a
subset of art objects in an order that most appeals to the user.

Constraints

A constraint is an explicit filter. If one of the constraints below is selected by the user, the
number of images that are returned is reduced to those which satisfy the constraint. Thus,
if the catalog begins with 10,000 pieces of art and the height constraint is set to 10 inches
or less, then browsing will be possible only on pieces of art that are 10 inches high, or less.

• Height range specified in Inches
• Width range specified in Inches
• Price range specified in Inches
• Medium (one or more selections)
• Subject (one or more selections)
• Color (one or more selections)
• Is available for sale
• One object per artist (a.k.a. Search by Artist)

Weighting

A weighting is an implicit filter, and is used to order the display of the images that remain
after the constraints are applied. A keyword can be used to positively affect the ordering of
the set. Thus, if the constraints produce a subset of 1,000 art pieces, then the combination
of constraint/keyword values are used to rank the 1,000 pieces and produce an ordering
that will help the visitor find art of interest. Note that both constraints and keywords will
have values that affect the ordering, even though constraints are used to restrict the size
of the set.

• Keywords
• Subject
• Style
• Color
• Medium

The following actions influence the weight designated to the art objects within the subset.

Custom Search page

• User enters either or both Heights (constraint)
• User enters either or both Widths (constraint)
• User enters either or both Price Ranges (constraint)
• User selects one or more Mediums (constraint)
• User selects one or more Subjects (constraint)
• User selects one or more Colors (constraint)
• User selects “Don’t show me sold works” (constraint)

SMARTBROWSE PROJECT FUNCTIONAL SPECIFICATION

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2000 by NextMonet, Inc.

- 4 -

• User selects “Search by Artist” (constraint)
• User selects one or more Keywords (weight by keyword)

Thumbnail Browse page

• User selects a piece (weight using this object’s Keywords)

Working Page

• Enlarge piece (weight using this object’s Keywords)
• Rate the Subject (weight using this object’s Subject)
• Rate the Style (weight using this object’s Style)
• Rate the Color (weight using this object’s Color)
• Rate the Medium (weight using this object’s Medium)

Functional Components - Background

In this section the functional components of this project will be detailed a little deeper. In
particular, the existing functional relationships will be articulated. The next section will
outline the implementation strategy for each required functionality.

Immediate Reordering

This functionality means that when an explicit judgement (i.e., a rating) is made by a user
on the working page (artImage.jhtml), the reordering that is displayed in
searchResults.jhtml is based on the entire collection and not just the unranked images. In
the present method, those images displayed on the thumbnail page (searchResults.jhtml)
are not part of the ordering considered by SmartBrowse. In the proposed method, the
entire set of images will be considered. The affected components are:

• ArtImage.jhtml
• SearchResults.jhtml
• SmartBrowseFormHandler.java
• LightWeightArtViewer.java
• SmartBrowseSessionBrowser.java
• SmartBrowseSession.java

In this case, the reordering affects the starting image of the session, so after the
Collections.sort call, the searchResults.jhtml page displays using the startImage = 1
instead of startImage = size + 1, where size is the number of images on the current
thumbnail page.

The overall flow is depicted in the figure below:

SMARTBROWSE PROJECT FUNCTIONAL SPECIFICATION

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2000 by NextMonet, Inc.

- 5 -

searchResults.jhtml

LightWeightArtViewer.java
(service)

LightWeightArtViewer.java
(getArtObjects)

SmartBrowseSessionBrowser.java
(getSubhectIDs)

SmartBrowseSession.java
(getNextSkus)

SmartBrowseSession.java
(rankArtResults)

Collections.sort

jhtml/search

java/Art

java/SmartBrowse

artImage.jhtml detailedSearch.jhtml

searchResults.jhtml

The function of each of these components, particularly with respect to the proposed
project, is described below:

searchResults.jhtml

This is the target webpage for searches, the so-called thumbnail page. When this page is
invoked, ultimately the current SmartBrowse session is resorted. The images ranging from
startIndex to Max(startIndex + 7, endIndex – startIndex) are then displayed. Each of these
images is in the new sorting, with the selected image being the first in the sort.

SMARTBROWSE PROJECT FUNCTIONAL SPECIFICATION

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2000 by NextMonet, Inc.

- 6 -

bean:LightWeightArtViewer.DisplayStartIndex
bean:LightWeightArtViewer.artCollection.length
(LightWeightArtViewer) param:displayableItems

param in the LWAV object above is a request paramter that is retrieved from the LWAV
servlet when the service method is called, and represents the artObjects collection as a
sorted array of lightweight art objects.

LightWeightArtViewer.java

Two methods are called in this servlet class. The first one is called right out of the
webpage invocation, the service method. The service method tries to get the startIndex
from the request, and it tries to set the displayableItems in the request to the result of
calling the getArtObjects method. It then returns control to the webpage.

The getArtObjects method gets an array of art object Ids from the ArtObjects relational
view. It then users that relational view to get another relational view of art objects by their
sku numbers. It builds an array of art objects from that relational view. It does a similar
thing with the art collections. It then returns the reordered set of the collection, the ids, or a
new collections, in that preference order.

SmartBrowseSessionBrowser.java

The getSubsetIDs method is required by the LightWeightBrowsable interface, and is
implemented here to

SmartBrowseSession.java

The getSubsetIDs method is called in the getNextSkus method defined in
SmartBrowseSession.java. This method’s real claim to fame is that it calls the
rankArtResults method, but only if an explicit judgement has been made on the working
page.

rankArtResults does a number of things. First it loops through the selected keywords and
creates an accumulator for each one. Then it sets the judgement value to the appropriate
value and adds that value to the appropriate keyword accumulator (or creates one if not
found). Then it goes through all the artObjects again and checks to see if they exceed the
correlation threshold (+ or -). If so, it adds the correlation threshold to the object’s ranking
and sets the art object’s rank to be that ranking. Finally it calls Collections.sort on the
ranked list.

Collections.sort

This is a method in the Collections class, which is in java.util.Collections. The sort method
takes a single parameter, an ArrayList, and sorts by its natural elements.

Immediate Search

This functionality means that when an explicit judgement (i.e., a rating) is made (a rating)
by the user on the working page (artImage.jhtml), there is no accumulation of values prior
to the collection sorting. The keywords associated with the currently selected image, and

SMARTBROWSE PROJECT FUNCTIONAL SPECIFICATION

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2000 by NextMonet, Inc.

- 7 -

whatever category of search that is selected, are the only determiners in the ordering of
objects in searchResults.jhtml. The most profound difference in this approach is that a
new SmartBrowseSession is created, so there is no accumulation to be performed. This
action works in conjunction with the immediate reordering function. Currently, when a user
makes an explicit judgement, the Collections.sort method is called, but control isn’t shifted
away from the working page. In the proposed model, if the user makes any judgement
control is immediately returned to the thumb nail page. A ‘back’ judgement returns to the
initial thumbnail page, and a ‘show me more’ judgement forwards to a new thumbnail
page.

<input type = "select"
 bean = "SmartBrowseFormHandler.rating"
 value = "50"
 onClick = "rateIt.submit()">

<input type = "hidden"
 bean = "SmartBrowseFormHandler.sku"
 value = "param:sku">

<input type = "hidden"
 name = "sku"
 value = "param:sku">

<input type = "hidden"
 name = "submitRanking"
 bean = "SmartBrowseFormHandler.explicitRanking"
 value = "submit">

Category Search

This functionality means that a user may select a category of “show me more like this”
rather than the current mechanism which equally weights all keywords associated with the
artwork that is rated. The categories will be general: (1) color, (2) style, (3) subject, (4)
medium, and the current mechanism (all). In order to implement this functionality, new
methods must be developed in SmartBrowseSession.java since the current mechanism in
artImage.jhtml sets the rating and that rating is applied to all keywords for the art object
equally. Under the new functionality, the selected category gets a huge bump and the
remaining keywords get equal but smaller bumps, and all other keywords are either
reinitialized or left the same.

Filter Fix on Custom Search Page

This functional change amounts to looking at the tables associated with the attributes that
are displayed in the detailedSearch.jhtml page and removing ones that aren’t appropriate
and reordering the ones that are. There are three groups of interest on the Custom Search
page (detailedSearch.jhtml): Medium, Subject, and Color. Each of them use the following
fragment of pseudocode:

Select bean = SmartBrowseFormHandler.medium
 droplet bean = /nextmonet/search/AttributeValues
 param name = attributeID value = 1007

SMARTBROWSE PROJECT FUNCTIONAL SPECIFICATION

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2000 by NextMonet, Inc.

- 8 -

 oparam name = output
 droplet foreach
 param name = array value = param:attributeValues
 param name = sortProperties value = +name
 display-stuff

The only difference is that the value (1007 above) is 1003 for subject and 1002 for color.
The AttributeValues call points to getAttributeValues method in the
AttributeValues class, which invokes the AttributeValueRView Relational View,
and the ByTypeID subview. This Relational View is found in the
“r2/db/rviews/art.rvw” file

The table that this Relational View points to is ATTRIBUTE_VALUES, and has three
fields: name, ID, and typeID.

Implementing this fix will require the removal of some of the attribute values from
ATTRIBUTE_VALUES, and constructing a new subview that returns the items in the order
they are found in, which means that we will probably have to reorder their typeIDs. What
will the effect on other collections be? Are these attributes used in any capacity except for
search?

Persistent Custom Search Filters

This functionality simply requires that we reload the SmartBrowse parameters into the
Custom Search page (detailedSearch.jhtml) in the same manner that we reload the
SmartBrowse keywords at present. The following code fragment should serve as a guide:

Select bean = SmartBrowseFormHandler.color size = 4 multiple
 droplet switch
 param name = value value =
bean.SmartBrowseFormHandler.ColorEmpty
 oparam name = true
 droplet bean = /nextmonet/search/AttributeValues
 param name = attributeID value = 1002
 oparam name = output
 OPTION VALUE = "" Any /OPTION
 droplet bean = ForEach
 param name = array value = param:attributeValues
 param name = sortProperties value = +name
 oparam name = false
 droplet bean = RelationalViewDroplet
 param name = rviewname value = ArtObjectColors
 param name = subviewName value = byID
 param name = subviewParam0 value =
bean.SmartBrowseFormHandler.color
 oparam name = output
 droplet name = ForEach
 param name = array value = param:result
 param name = sortProperties value = +name

The concept here is that if there is a color attribute set from a previous search, and stored
in the SmartBrowseFormHandler, then we will retrieve it and display it. Otherwise we will

SMARTBROWSE PROJECT FUNCTIONAL SPECIFICATION

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2000 by NextMonet, Inc.

- 9 -

do what we are doing now. This requires three new methods, to check if medium, subject,
and color values have been set, and three Relational View subviews to retrieve them into
the form.

Cross-Session Search Criterion Persistence

This functionality means that the current persistent banner information, and the custom
search criterion, will be selectable by the user as persistent in their profile. If so, then the
ProfileHandler will load these persisted values from the user table in the database when
the user logs in. This will require the addition of medium, subject, color, and keywords
attributes to the ProfileHandler, along with the six URLs that are used to maintain smart
banners. To do this, the “r2/xml/NextMonet-profile-template.xml” file must be
modified to account for the new attributes, along with the Users table in the database.

Display Thumbnail After Rating

This functionality means that immediately after selecting a “more like this” button on the
working page (artImage.jhtml), the result will be displayed on the searchResults.jhtml
page. Currently the ranking system does the following:

SmartBrowseFormHandler.rating value = #
SmartBrowseFormHandler.explicitRanking Sets value for keyword
SmartBrowseFormHandler.handleExplicitRanking
SmartBrowseSession.explicitJudgement

Notice that this doesn’t actually result in a new sorting, let alone forwarding anywhere.
Thus the proposed functionality must perform the ranking, and must also perform the sort
and forward to searchResults.jhtml. The sort must put the current image at the front of the
list.

Search for Artists

This functionality adds onto the existing functionality, in that the result of a sort will be the
same, but that another pass is made through the sorted list prior to display, and in this
pass the following pseudocode will be implemented:

Loop through the artObjects list
 perform a lookup on the art object’s artistID

 if the artistID hasn’t been seen
 locate the representative art object ID for this artist
 add the art object ID to a temporary list
 add the artistID to another temporary list
 continue

Return the temporary art list as the new sorting

This operation is O(N), but at least it is being performed on the reduced set of art objects.

SMARTBROWSE PROJECT FUNCTIONAL SPECIFICATION

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2000 by NextMonet, Inc.

- 10 -

Functional Components – Implementation Strategy

In this section the functional components of this project will be detailed a little deeper. In
particular, the existing functional relationships will be articulated. The next section will
outline the implementation strategy for each required functionality will be discussed. and
associated with functional flows in the existing architecture. From here it is expected an
engineer will be able to implement the functionality.

Immediate Reordering

This functionality means that when an explicit judgement (i.e., a rating) is made by a user
on the working page (artImage.jhtml), the reordering that is displayed in
searchResults.jhtml is based on the entire collection and not just the unranked images. In
the present method, those images displayed on the thumbnail page (searchResults.jhtml)
are not part of the ordering considered by SmartBrowse. In the proposed method, the
entire set of images will be considered. The affected components are:

• ArtImage.jhtml
• SearchResults.jhtml
• SmartBrowseFormHandler.java
• LightWeightArtViewer.java
• SmartBrowseSessionBrowser.java
• SmartBrowseSession.java

In this case, the reordering affects the starting image of the session, so after the
Collections.sort call, the searchResults.jhtml page displays using the startImage = 1
instead of startImage = size + 1, where size is the number of images on the current
thumbnail page.

Immediate Search

This functionality means that when an explicit judgement (i.e., a rating) is made (a rating)
by the user on the working page (artImage.jhtml), there is no accumulation of values prior
to the collection sorting. The keywords associated with the currently selected image, and
whatever category of search that is selected, are the only determiners in the ordering of
objects in searchResults.jhtml. The most profound difference in this approach is that a
new SmartBrowseSession is created, so there is no accumulation to be performed. This
action works in conjunction with the immediate reordering function. Currently, when a user
makes an explicit judgement, the Collections.sort method is called, but control isn’t shifted
away from the working page. In the proposed model, if the user makes any judgement
control is immediately returned to the thumb nail page. A ‘back’ judgement returns to the
initial thumbnail page, and a ‘show me more’ judgement forwards to a new thumbnail
page.

<input type = "select"
 bean = "SmartBrowseFormHandler.rating"
 value = "50"
 onClick = "rateIt.submit()">

SMARTBROWSE PROJECT FUNCTIONAL SPECIFICATION

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2000 by NextMonet, Inc.

- 11 -

<input type = "hidden"
 bean = "SmartBrowseFormHandler.sku"
 value = "param:sku">

<input type = "hidden"
 name = "sku"
 value = "param:sku">

<input type = "hidden"
 name = "submitRanking"
 bean = "SmartBrowseFormHandler.explicitRanking"
 value = "submit">

Category Search

This functionality means that a user may select a category of “show me more like this”
rather than the current mechanism which equally weights all keywords associated with the
artwork that is rated. The categories will be general: (1) color, (2) style, (3) subject, (4)
medium, and the current mechanism (all). In order to implement this functionality, new
methods must be developed in SmartBrowseSession.java since the current mechanism in
artImage.jhtml sets the rating and that rating is applied to all keywords for the art object
equally. Under the new functionality, the selected category gets a huge bump and the
remaining keywords get equal but smaller bumps, and all other keywords are either
reinitialized or left the same.

Filter Fix on Custom Search Page

This functional change amounts to looking at the tables associated with the attributes that
are displayed in the detailedSearch.jhtml page and removing ones that aren’t appropriate
and reordering the ones that are. There are three groups of interest on the Custom Search
page (detailedSearch.jhtml): Medium, Subject, and Color. Each of them use the following
fragment of pseudocode:

Select bean = SmartBrowseFormHandler.medium
 droplet bean = /nextmonet/search/AttributeValues
 param name = attributeID value = 1007
 oparam name = output
 droplet foreach
 param name = array value = param:attributeValues
 param name = sortProperties value = +name
 display-stuff

The only difference is that the value (1007 above) is 1003 for subject and 1002 for color.
The AttributeValues call points to getAttributeValues method in the
AttributeValues class, which invokes the AttributeValueRView Relational View,
and the ByTypeID subview. This Relational View is found in the
“r2/db/rviews/art.rvw” file

The table that this Relational View points to is ATTRIBUTE_VALUES, and has three
fields: name, ID, and typeID.

SMARTBROWSE PROJECT FUNCTIONAL SPECIFICATION

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2000 by NextMonet, Inc.

- 12 -

Implementing this fix will require the removal of some of the attribute values from
ATTRIBUTE_VALUES, and constructing a new subview that returns the items in the order
they are found in, which means that we will probably have to reorder their typeIDs. What
will the effect on other collections be? Are these attributes used in any capacity except for
search?

Persistent Custom Search Filters

This functionality simply requires that we reload the SmartBrowse parameters into the
Custom Search page (detailedSearch.jhtml) in the same manner that we reload the
SmartBrowse keywords at present. The following code fragment should serve as a guide:

Select bean = SmartBrowseFormHandler.color size = 4 multiple
 droplet switch
 param name = value value =
bean.SmartBrowseFormHandler.ColorEmpty
 oparam name = true
 droplet bean = /nextmonet/search/AttributeValues
 param name = attributeID value = 1002
 oparam name = output
 OPTION VALUE = "" Any /OPTION
 droplet bean = ForEach
 param name = array value = param:attributeValues
 param name = sortProperties value = +name
 oparam name = false
 droplet bean = RelationalViewDroplet
 param name = rviewname value = ArtObjectColors
 param name = subviewName value = byID
 param name = subviewParam0 value =
bean.SmartBrowseFormHandler.color
 oparam name = output
 droplet name = ForEach
 param name = array value = param:result
 param name = sortProperties value = +name

The concept here is that if there is a color attribute set from a previous search, and stored
in the SmartBrowseFormHandler, then we will retrieve it and display it. Otherwise we will
do what we are doing now. This requires three new methods, to check if medium, subject,
and color values have been set, and three Relational View subviews to retrieve them into
the form.

Cross-Session Search Criterion Persistence

This functionality means that the current persistent banner information, and the custom
search criterion, will be selectable by the user as persistent in their profile. If so, then the
ProfileHandler will load these persisted values from the user table in the database when
the user logs in. This will require the addition of medium, subject, color, and keywords
attributes to the ProfileHandler, along with the six URLs that are used to maintain smart
banners. To do this, the “r2/xml/NextMonet-profile-template.xml” file must be
modified to account for the new attributes, along with the Users table in the database.

SMARTBROWSE PROJECT FUNCTIONAL SPECIFICATION

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2000 by NextMonet, Inc.

- 13 -

Display Thumbnail After Rating

This functionality means that immediately after selecting a “more like this” button on the
working page (artImage.jhtml), the result will be displayed on the searchResults.jhtml
page. Currently the ranking system does the following:

SmartBrowseFormHandler.rating value = #
SmartBrowseFormHandler.explicitRanking Sets value for keyword
SmartBrowseFormHandler.handleExplicitRanking
SmartBrowseSession.explicitJudgement

Notice that this doesn’t actually result in a new sorting, let alone forwarding anywhere.
Thus the proposed functionality must perform the ranking, and must also perform the sort
and forward to searchResults.jhtml. The sort must put the current image at the front of the
list.

Search for Artists

This functionality adds onto the existing functionality, in that the result of a sort will be the
same, but that another pass is made through the sorted list prior to display, and in this
pass the following pseudocode will be implemented:

Loop through the artObjects list
 perform a lookup on the art object’s artistID

 if the artistID hasn’t been seen
 locate the representative art object ID for this artist
 add the art object ID to a temporary list
 add the artistID to another temporary list
 continue

Return the temporary art list as the new sorting

This operation is O(N), but at least it is being performed on the reduced set of art objects.

Example

This section is to give a single example of each of the parts of the specification. The parts
include:

n The use cases

n User interface elements

n Page flows (storyboards)

SMARTBROWSE PROJECT FUNCTIONAL SPECIFICATION

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2000 by NextMonet, Inc.

- 14 -

The Detailed Use Cases

These talk about the use cases for each tool that is specified and the primary and major
secondary scenarios for each use case. First the actors for the project are defined, and
then the use cases.

Actors

n USER: Viewing the catalog intent on finding a relevant piece of art.

n DYN: The Dynamo Application Server

n DB: The Oracle Database Server

n IS: The True Spectra Image Server

artImage.jhtml
(working page)

detailedSearch.jhtml
(custom search page)

searchResults.jhtml
(thumbnail page)

SmartBrowseFormHandler

Set constraints and
keywords

Rate by metric

Order artists by
ranked metric

searchResults.jhtml
(thumbnail page)

Order art by
ranked metric

SMARTBROWSE PROJECT FUNCTIONAL SPECIFICATION

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2000 by NextMonet, Inc.

- 15 -

User-Driven Use Cases

SearchForArtist

MoreSubjectLikeThis

USER DYN

MoreStyleLikeThis

MoreColorLikeThis

MoreMediumLikeThis

MoreLikeThis

SearchForArtObject

BackToBrowse

USER SearchForArtObject into DYN

Precondition: Selections are available on the ‘custom search page’

Flow of Events:

Primary Scenario

1) USER selects constraints and keywords to search on from the Custom Search page

2) USER selects the Search For Art Object from the Custom Search page pull down

3) DYN displays the first page of art objects which satisfy the USERs constraints

SMARTBROWSE PROJECT FUNCTIONAL SPECIFICATION

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2000 by NextMonet, Inc.

- 16 -

Postcondition: Art objects matching the search constraints and keywords are
displayed in the browser page.

USER SearchForArtists into DYN

Precondition: Selections are available on the ‘custom search page’

Flow of Events:

Primary Scenario

1) USER selects constraints and keywords to search on from the Custom Search page

2) USER selects the Search For Artists from the Custom Search page pulldown

3) DYN displays a page of artists links, by their signature image and their name, which
satisfy the USERs constraints and keywords

Postcondition: Artists matching the search constraints and keywords are
displayed in the artist page.

USER MoreSubjectLikeThis into DYN

Precondition: An artwork is viewable on the ‘working page’ section of the
catalog working page.

Flow of Events:

Primary Scenario

1) USER selects ‘More Subject Like This’ button from catalog ‘working page’ segment

2) DYN uses SmartBrowse to locate and display a browse page with similar works on it
starting with the current art object.

Postcondition: Similar artworks are displayed in browse format, ordered most
prominently by subject.

USER MoreStyleLikeThis into DYN

Precondition: An artwork is viewable on the ‘working page’ section of the
catalog working page.

Flow of Events:

Primary Scenario

1) USER selects ‘More Style Like This’ button from catalog ‘working page’ segment

2) DYN uses SmartBrowse to locate and display a browse page with similar works on it
starting with the current art object and weighted toward style.

SMARTBROWSE PROJECT FUNCTIONAL SPECIFICATION

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2000 by NextMonet, Inc.

- 17 -

Postcondition: Similar artworks are displayed in browse format, ordered most
prominently by style.

USER MoreColorLikeThis into DYN

Precondition: An artwork is viewable on the ‘working page’ section of the
catalog working page.

Flow of Events:

Primary Scenario

1) USER selects ‘More Color Like This’ button from catalog ‘working page’ segment

2) DYN uses SmartBrowse to locate and display a browse page with similar works on it
starting with the current art object and weighted toward color.

Postcondition: Similar artworks are displayed in browse format, ordered most
prominently by color.

USER MoreMediumLikeThis into DYN

Precondition: An artwork is viewable on the ‘working page’ section of the
catalog working page.

Flow of Events:

Primary Scenario

1) USER selects ‘More Medium Like This’ button from catalog ‘working page’ segment

2) DYN uses SmartBrowse to locate and display a browse page with similar works on it
starting with the current art object and weighted toward medium.

Postcondition: Similar artworks are displayed in browse format, ordered most
prominently by medium.

USER MoreLikeThis into DYN

Precondition: An artwork is viewable on the ‘working page’ section of the
catalog working page.

Flow of Events:

Primary Scenario

1) USER selects ‘More Like This’ button from catalog ‘working page’ segment

2) DYN uses SmartBrowse to locate and display a browse page with similar works on it
starting with the current art object and using a general ordering metric.

SMARTBROWSE PROJECT FUNCTIONAL SPECIFICATION

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2000 by NextMonet, Inc.

- 18 -

Postcondition: Similar artworks are displayed in browse format, ordered most
prominently by NextMonet’s weighting selection.

USER ReturnToBrowse into DYN

Precondition: An artwork is viewable on the ‘working page’ section of the
catalog working page.

Flow of Events:

Primary Scenario

1) USER selects ‘Return To Browse’ button from catalog ‘working page’ segment

2) DYN returns to the last browse page with same ordering as previous.

Postcondition: The previous browse page is displayed.

User Interface Elements

The UI Elements involved in this enhancement are those on the Working Page and the
Custom Search Page. There are three UI components directly affected by this
enhancement:

1) Working page rating

2) Working page selection

3) Custom search page search type selection

Working Page Rating

Description Working page
Functionality 1. Allows user to rate an artwork for browsing preference from page
Applies To Browse pages
Key Screen Elements • ‘return to browse’ button, ‘more like this’ button, ‘more like this

subject’ button, ‘more like this style’ button, ‘more like this medium’
button, ‘more like this color’ button.

General Appearance
(illustrative)

SMARTBROWSE PROJECT FUNCTIONAL SPECIFICATION

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2000 by NextMonet, Inc.

- 19 -

Standard Header

Standard Footer

Frame

Artist Name
Artwork Title

Type
Price

Description Artist ArtSmart Overview

Purchase

Enlarge Save Print

Browse More

Pages jhtml/art/artImage.jhtml
Implementation Priority
Implementation Difficulty
Implementation Notes Affects SmartBrowseFormHandler (explicitRanking)

Custom Search Page Selection

Description Custom search page
Functionality 2. Allows user to select search results as artwork or artist from

pulldown
Applies To Browse pages
Key Screen Elements • New element on page.

General Appearance
(illustrative)

SMARTBROWSE PROJECT FUNCTIONAL SPECIFICATION

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2000 by NextMonet, Inc.

- 20 -

Standard Header

Standard Footer

Search Artist Search Art Reset

+

-

Pages jhtml/search/detailedSearch.jhtml
Implementation Priority
Implementation Difficulty
Implementation Notes SmartBrowseFormHandler.submitFilterCriteria, refineSearch = false,

successURL = /search/searchResults.jhtml

