

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

 EFI ToolShed Project
 Functional Specification

Jack Hodges
January 17, 2005

ToolShed Project Team: Jack Hodges, Gaoxiang Xu,
Rajesh Poddar

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003 by EFI, Inc.

- 1 -

Contents

Abstract ... 3
Discussion ... 4

Objective ... 4
Overview of Problem .. 4

Example ... 4
Constraints ... 5

Possible Solution Strategies .. 5
Proposed Solution Strategy .. 6

Project Deliverables .. 7
ToolShed Project Footprint .. 7
Outline ... 8

ToolShed Platform Architecture .. 9
Tools .. 9
Mechanisms .. 10
Approach and Background .. 10
ToolShed Application Architecture ... 15

Package and Component Interactions ... 16
Workflow Mechanisms .. 18
Package and Class Identification .. 19
XML Schema for Model Validation ... 20
XML Packages .. 27
Models .. 30
Views .. 39
UI Package .. 43
Beans Package ... 44
Actions .. 45
Application-Specific Packages (appls) ... 46

Data Validation .. 47
Generate-Time Validation ... 47
Runtime Validation .. 47

Constraint Representation and Validation (should be level 4 heading) ... 72
Constraint Representation with RuleML ... 73
RuleML Parsing to Java Rules ... 76
Rule-Based Processing ... 76
Constraint Validation ... 77

Server Communications ... 77
What is SOAP, and Why Use It? .. 79
SOAP in ToolShed .. 81
SOAP Requirements in ToolShed .. 85

Localization and Internationalization .. 86
General Localization Approach ... 86
String Acquisition ... 86
String Translation ... 87

Design Requirements .. 89
Use Cases .. 89
Actors .. 89

User-Driven Use Cases .. 89
USER SelectTSSetup into TS .. 95

User Interface Elements ... 95
JTabbedPanel ... 96

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 2 -

JLabel Component .. 97
JButton Component ... 98
JCheckbox Component ... 99
Jlist Component ... 100
JTextField ... 101
JComboBox Component ... 102
JRadioButton Component ... 103
JTable Component .. 104

Implementation and Resource Requirements ... 106
Phased Implementation Plan .. 106
Resource Allocation Requirements .. 107

References .. 108
Tools Used in ToolShed Design and Implementation ... 108
Links and Reference Documents ... 108
Links to ToolShed Documents .. 109

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 3 -

Abstract

This document serves to define the basic market and user requirements for the tools that
will allow EFI customers to use Fiery Setup and Installation while enabling EFI project
managers to configure the setup/installation user interface without direct engineering
intervention. This project will consist of a redesign/redevelopment effort targeted at
replacing the current WebTools client and server with new versions that perform the same
tasks as before but in a more effective/efficient manner. The new model introduces a new
[default] client look and feel but incorporates a consistent functionality with the existing
client.

The requirements/constraints for the project will be specified by the combination of the
functional use cases for the client, the user interface (UI) elements, the storyboards of
pages that will implement the use cases pertinent to the tool, the object model, and the
functional mechanisms in the tool. This document represents the engineering response to
the Fiery System 5.5 Server Product Specification, dated 10/21/2002, under remote setup,
pages 39-61.

This is a long and complex document and it is not expected that everyone who picks it up
will need to read all of it. Below is a table giving an idea as to which sections will be of
interest to which groups. It is only a guideline.

Who Should Read Document Section Pages

Marketing, Planners Abstract
Discussion

3
4 - 8

Designers Abstract
Discussion
Design Requirements (UI elements)

3
4 – 8
95 - 101

Engineering Managers Abstract
Discussion
Architecture (tools, mechanisms, approach)
Data Validation
Constraint Validation
Communications
Localization and Internationalization
Implementation
References

3
4 – 8
9 – 13
47, 48
72
77
86, 85
106, 105
108

QA Design Requirements (actors, use cases) 89-93
Development Engineers Entire document

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 4 -

Discussion

Objective

The ToolShed project is intended to provide content usability support by providing the user
with a mechanism for installing and setting up a fiery server, and to provide interface
configuration support by providing staff with a mechanism for configuring the user
interface.

Overview of Problem

There are seven motivations for redesigning/developing webtools related applications, as
follows:

§ Multiple software versions exist for different products, making maintenance
difficult and time consuming.

§ Product managers want to have interface control over the software look and feel
for different clients, but often making these gratuitous changes is problematic for
the overall codebase.

§ Integration issues with the Fiery server continue to be problematic, in that
changes to the server require updates and changes to the client software that
should not be required.

§ Software engineers are required to make adhoc changes to the client software
that reduce its coherence, integrity, and performance.

§ General solutions require larger footprints than the client is allowed to have.

§ Changes to server or PPD definitions require changes in how the client is
accessed, making it difficult to maintain the software for multiple clients.

§ It is desired to have a single application for all instances of WebTools and
WebSetup, eliminating the Fiery Setup Bar.

§ The WebTools 1 codebase needs to be retired, because it was developed without
any coherent architectural approach, has been modified over the years so that it
is no longer coherent to whatever design approach was used, makes use of
outdated components and programming mechanisms, makes use of brittle
custom components that cannot be easily updated or extended, makes use of
embedded logic, implements some of the data statically or using hardcoded
values instead of property managers, has no consistent style or documentation.
All of these factors render it very difficult to maintain the software.

Example

An illustrative example of this problem is one in which a new product is developed for a
customer, and the customer wants to add/remove buttons from the main menu, or wants
to customize the user interface for its particular needs. Using the current methodology, the
former functionality can be achieved, as WebTools has a setup mechanism that can be

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 5 -

configured at the server. The user interface, however, is quite restrictive in what can be
done in the way of customization. For example, were the product developers interested in
moving the location of buttons or tabs, or wanted to change the color scheme, or wanted
to add branding to the entire application, it would simply be (practically speaking)
impossible, because the same software is supporting all applications and cannot be
modified to support just one. A unique build would have to be created and maintained, and
this would not be cost effective in terms of engineering resources.

The proposed approach provides product developers the flexibility to both add and
remove functionality, while at the same time enabling UI customization on an
unprecedented level.

Constraints

Using a redesigned WebTools presentation tier, the user should be able to use any
existing component of WebTools setup or install as it functions today. The project
manager should be able to modify the default client interface in such as way as to
customize it for particular clients without compromising the underlying functionality. These
mechanisms must satisfy the following twelve constraints:

§ The implementation must support all fiery server products with a common
codebase.

§ The implementation must support rapid prototyping, development, release, and
maintenance.

§ The implementation minimizes footprint by using off-the-shelf components
available in the JDK wherever possible.

§ The implementation extends its functionality by using open standard
communications protocols wherever possible.

§ The server installation total footprint remains less than 1.5 MB.

§ The client interface response time must be better than the current WebTools
implementation.

§ Eliminates the problem with client strings which is pervasive across product lines.

§ Support ‘undo’ when a user selects ‘cancel’, requiring local/remote persistence of
the user interface values.

§ Easily customizable by project groups, to add/remove functionality and interface
components.

§ Support data type validation.

§ Support behavioral (i.e., business rules) validation.

§ Deploys as a web application (on any OS) and as a standalone application on
Windows architectures.

Possible Solution Strategies

There are three viable approaches that could be leveraged to resolve the issues that meet
some or all of the above project constraints: (1) a web-based client-server model, (2) an

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 6 -

XML-based model with a soap-based server interaction, or (3) a hybrid XML-based model
with the current (direct) server interactions.

The most general approach would be a client server model that would support applets,
applications, and multimodal web-based interactions. Unfortunately, this approach would
be best suited to the use of N-Tiered architectures, the combination of which could never
be developed within the hardware/software limitations of the product. The associated
application server alone would require more resources than the entire embedded footprint
allows.

The next best approach would be to use a general approach for representing the user
interface requirements, a small-footprint method to create the display, and to revamp the
communications mechanism to be a single, uniform approach, such as SOAP that could
leverage the existing web server. This approach is feasible, but works best if the number
of ways that server-based data is represented is minimized and the backward compatibility
requirement is enforced at the server and not at the client. This would mean that the client
would communicate to the server through the server, and the server would, at worst,
delegate to other data models if necessary, but would preferably create a unified data
model. This approach would also require a SOAP server running on the server side, which
would add some runtime overhead to the server, though the server is already running an
web server and the SOAP server would piggyback on the web server’s resources.

The third approach would be a hybrid of the second, XML-based, approach and the
currently-supported communications protocols integrated into a rewrite of the client’s
server code. Although this approach satisfies many of the stipulated constraints, I does
nothing to migrate the communications layer to one in which the client is ignorant of how
the server provides data, which has been an ongoing problem between the client and
server development groups.

Proposed Solution Strategy

The solution strategy that provides the front-end flexibility required for the client and meets
the other project constraints data models is the second, or SOAP, approach mentioned
above. In this approach, the client is redeveloped to work as an XML-based approach that
functions as follows:

§ The server delivers the baseline configuration, page, object, and constraint
models, written in XML, and adhering to a schema model of supported
components and parameters, to the client host. These files completely describe
the application being constructed.

§ The client applet/application parses the XML files both into java-based swing
components and their contents and constructs the page using an application
toolkit. As part of this process, the application-specific representations are
mapped into application-generic components by the toolkit.

§ The page is rendered on the client host’s interface browser by the toolkit.

§ The user performs normal client-type actions (e.g., button presses, selections,
text input, tab selections, etc.). These are handled by application-specific
components that interact with the application-specific data models. Any rendering
is handled by the toolkit.

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 7 -

§ The interface enforces UI-specific data constraints, and catches and handles any
violations between UI-specific data constraints.

§ The validated page contents are submitted to the server using the SOAP
protocols.

§ The SOAP server translates the SOAP request into C++ objects and Harmony
ATTR API calls.

§ The Harmony results are aggregated into the C++ objects, packaged up into a
SOAP response envelope, and returned to the client.

§ The client evaluates and renders the response.

Project Deliverables

Engineering will produce a ToolShed implementation which meets the spirit of the
requirements as outlined in the table in section 11.1 of the Fiery Product Specification,
dated 4/16/2003. The look and feel have been finalized at the time of this writing, but the
usage of UI components has been restricted to Swing components and the ToolShed
implementation will support the currently-provided designs for the EFI WebTools2 UI
Spec, dated 9/24/2003.

ToolShed Project Footprint

ToolShed must fit inside a 1.2 MB footprint. At present, the following space requirements
are necessary for the functional aspects of the project:

Client Component Library Size
XML Parser (crimson.jar) 201 KB
JDOM (jdom.jar) 125 KB
Communications (soap.jar) 237 KB
ToolShed 281 KB1
Rule Engine (Mandarax) 400 KB

Server Component Library Size
gSOAP server 150 KB
Server side C++ classes/files 100 KB
Total without rule engine 994 KB
Total with Mandarax 1494 KB

Table 1: Approximate ToolShed required library footprint.

The Java runtime environment and the web server have been left out of this table because
they are part of the current WebTools or server footprints and, by themselves, exceed the
entire project space allocation. It is anticipated that some of the space requirement
identified in the table can be reduced by removing some of the unnecessary SOAP
components. For example, the Velocity Exchange project was able to reduce its SOAP
component size from several MB to several KB by removing classes that aren’t required. It
is also anticipated that the use of another (or home-grown) rule engine will further reduce
the space requirements. As an illustration, the Mandarax project supports database
access, and those libraries, though fully integrated into the model, account for

1 This is the size of required classes in the current prototype and will increase as full functionality is implemented.

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 8 -

approximately 120 KB alone. Thus approximately 150 KB must be saved assuming that
the Java runtime is a cost not attributed to the ToolShed footprint, but it is assumed that
this can be made up through judicious conservation in the library files.

In addition to the requirements specified above, additional components are required for
generating communications calls on the server side. It is currently unknown what the size
of these classes will be, but they cannot be shared with the Java client because they are
implemented in C++.

There is currently no way to identify CPU/processing requirements as they impact the
server when it is co-hosted with the client. The processing requirements are not expected
to exceed those of the current client.

Outline

The remainder of this document presents the architectural requirements of the proposed
ToolShed project engineering solution. These include the tools that must be supported,
the mechanisms needed to support the implementation of those tools, the design of those
mechanisms (class diagrams, sequence diagrams, examples, algorithms) used to
implement the project, and a review of the use cases that must be supported by the
product.

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 9 -

ToolShed Platform Architecture

ToolShed is the project name for the toolkit used to implement WebTools2. As such, it is
supports a redesign/reimplementation of an existing EFI WebTools application, but can
also be used to implement applications other than WebTools. While the client is being
redesigned, the baseline look and feel of the client is also being redesigned, along with the
server communications mechanism. The client no longer includes WebSpooler, but now
includes new and repackaged features, as described below.

The ToolShed implementation will be phased. In phase 1, which has been completed at
the time of this writing, a demonstration prototype will be presented that illustrates the
approach applied to the WebScan application. In phase 2 the Installer, WebSetup, and
remaining functional features will be prototyped. Phase 2 is also complete. In phase 3 the
same functionality will be extended and deployed. In phase 4 and beyond the remaining of
features will be added.

Tools

The major items that are accessible from WebTools2 implemented using ToolShed are:
installer, print, scan, jobs, job log, setup, manage, vb manage, paper catalog, and
estimate. The installer is a cgi script. VB manage, paper catalog, and estimate each point
to separate applications. In the first implementation, only setup will be supported directly,
leaving install, print, jobs, job log, and manage for future design and
implementation/migration to ToolShed, if desired. Since the first deployments are
expected to implement all of the functional features that would be used by these remaining
applications, it is not anticipated that their implementations will require significant
design/development time.

As a toolkit, ToolShed is comprised of the following three tools/components:

1) Product Creation Management Tool: This tool/control allows product developers to
create, edit, configure, and manage the GUI for their product while remaining
consistent with the ToolShed (and application) functional capabilities and constraints.
It produces three files: a configuration file, a UI specification file, and a rules file which,
together, define an application’s interface.

2) Localization Server/Builder Tool/Component: This tool/control allows the
developer to find out whether required strings exist in the localization repository, and
to acquire localized strings for an application based on the strings found in the UI
Specification XML file at build time. The strings are aggregated into a resource and
made available at run time based on the selected locale.

3) Toolkit Essentials Tool: This component supports the parsing, rendering, event
handling, and constraint validation required to implement an application. It is the core
of the toolkit.

Using these tools and components, any application can be constructed, in particular
WebTools. Moreover, applications can be aggregated easily, or made into standalone
component functionalities, with the same toolkit.

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 10 -

Mechanisms

Nine interacting mechanisms are required to develop ToolShed (and hence to develop
applications using ToolShed):

1) UI Representation Mechanism: This mechanism enables a generic description of
the user interface that will support the design requirements of the project. The
proposed implementation uses a set of XML description files (and associated
schemas) to describe the interface. The schemas enforce compliance with the objects
and object attributes that are supported by the toolkit.

4) Configuration Mechanism: This mechanism enables product developers to select
functionality, to show/hide elements, to set branding, to set look and feel capabilities,
and the like, for the entire application or at the component level. This mechanism is an
artifact of the representation format selected for the UI/data files, but is listed
separately because it relates directly to project use cases and is enforced externally
with a visual XML editor. This mechanism is mostly associated with the Design Tool.

5) Rendering Mechanism: This mechanism determines how XML is parsed into and
rendered into generic Swing-based user interface components. Discussion of this
mechanism will be paired with the UI representation mechanism.

6) Event Handling Mechanism: This mechanism represents and processes events
based on actions from users of the UI. This mechanism will be discussed in parallel
with the UI representation and parsing mechanism.

7) Exception Handling Mechanism: This mechanism handles exceptions in a
consistent and coherent manner. The exception handling mechanism is a
combination of the built-in exception handling mechanism in Java, as well as how the
exceptions are relayed to the user. This mechanism will be discussed in parallel with
the UI representation and parsing mechanism.

8) Validation Mechanism: This mechanism validates the UI model and data values
against their data types/ranges.

9) Constraint Representation and Validation Mechanism: This mechanism
represents the data constraints across multiple objects, and requires action when the
user makes selections.

10) Communications Mechanism: This mechanism dictates how information is
conveyed to and from the WebTools client and the Fiery server.

11) Localization/Internationalization Mechanisms: These mechanisms ensure that
localized strings and internationalized structure are supported in the new interface.

Approach and Background

The general ToolShed/WebTools2 architecture will integrate with other EFI components
as shown in the Figure 1:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 11 -

ToolShed

and
WebTools2

CWS
(remotely connected

to a Fiery)

FACI CWS
(locally connected to

a Fiery)

WebSetup2:
Server, Printer,
Network (port,

protocol, service)

Windows Network
Control Panel When select port or

protocol setup on
FACI system

Figure 1: ToolShed integration with CWS/Fiery.

Simply put, what was once split into two components, where the FACI CWS interacted
directly with the Windows Network Control Panel, now has a single point of interaction
using the WebTools2 application software. All versions of CWS and ToolShed interact
directly with this component. From the WebTools2 client perspective, the interaction
appears as shown in Figure 2:

Client

Server

WebTools2
Applet

Request UI spec

UI spec

Data request
[SOAP to Harmony,

ATTR API]

3

1
2

ToolShed

Figure 2: WebTools/ToolShed high-level component interaction.

The WebTools2 applet portion (at launch time) requests a UI specification from the Fiery
server (at 1), which is returned to WebTools2 by the server (2). The ToolShed toolkit then
parses the application-specific XML into renderable components and forwards the markup
to the client browser (3). User events are converted by ToolShed to appropriate
application-specific data requests and submitted to the server. All data requests are
mediated through SOAP to the server, which translates the requests to Harmony ATTR
calls. The ToolShed structure is itself shown in

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 12 -

ToolShed ToolKit

XML Parser

Swing Component
Mapping

Localization and
Internationalization

Rendering

SOAP
Communications

Data Validation

Localization Server

WebTools

Design Tool

Configuration Files

UI Specification Files

Object Files

Rules Files

Application Specific

Data Models

Action Managers

Figure 3: ToolShed component architecture.

The ToolShed toolkit (at 1) takes as primary input XML files produced by a design tool (at
3), and some application specific classes that define the behavior of objects and the
behavior of ui components (at 5). The files produced by the design tool describe the
runtime configuration of the application, the UIs, the objects used in the UI and the
constraints (as rules) between objects in the UI. These are clearly decoupled. The data
models and action managers map the items defined in these files to the toolkit internals.
During page launch, the XML files are parsed by the toolkit into Java Swing components
which are then rendered. When actions are performed, the action manager interacts with
the data model and through the communications layer (where required). Since the toolkit
internal structure is defined using standardized components, and the design tool produces
XML, and the SOAP communications layer is standard and open, the only application-
specific files are those that define the data model and action handling.

The proposed architecture makes use of an XML layer on the presentation interface
between the applet and the client that provides a uniform and implementation-independent
representation of the interface and the data it will display. The approach supports the
following six capabilities:

§ Widget implementations are kept distinct/separate from widget requirements
descriptions in the user interface. That is, they are decoupled.

§ Functionality at varying levels of granularity can be added/removed at launch
time.

§ The user interface can be customized by the product development group as long
as it adheres to the XML Schema provided by the ToolShed development group.

§ Coarse validation can be performed on either/both the server and client (if the
server groups implement an XML data hierarchy and adopt the ToolShed
constraint validation mechanism).

3

1

2

5

4

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 13 -

§ Granular validation can be represented in the interface and enforced by the client
at runtime.

§ Event handling is represented at the client level and either handled locally or
passed to the server through normal communications channels.

Demonstration prototypes have been constructed using the XMLTalk methodology, which
is presented herein for background. XMLTalk is a presentation layer that removes much of
the chore/overhead of developing and maintaining user interfaces by development
engineers, but also supports customization by product development teams. The XMLTalk
architecture is presented in Figure 4:

1

2

3

Figure 4: XMLTalk architecture.

The UserApplication (at 1 in Figure 4:) represents the WebTools2/ToolShed
applet/application, which implements the XMLTalk functionality as well as the current
WebSTools functionality. A set of components that implements the same functionality as
XMLTalk is constructed within the application, along with a parser that accepts an XML
page description and translates to this model. The page template is constructed in XML
(2) using the formalisms in this model, which is then parsed at runtime inside the
applet/application and rendered into the user interface (3).

The cornerstone of this approach is the ValueModel java bean, which is needed to
represent an attribute value in XML. This (abstract) bean defines accessors for an object
instance (i.e. setValue/getValue) and fires a PropertyChangeEvent when the value

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 14 -

changes, which can lead to rerendering of the associated component. Inherent in this
approach is a relationship between the XML value model and an associated Java domain
model, as shown in Figure 5:

UI
Object

Value
Object

Domain
Object

setValue()

getValue()

Domain interface

Figure 5: Basic ValueModel integration approach.

In the standard manner of presentation layers, the UI object has embedded calls for
dynamic data that invoke set/get methods on, in this case, the value object. In turn, the
value object has a one-to-one correspondence with the domain model. In the form shown
above, the ValueModel is of little practical value, since there is no value association to an
attribute in the domain model. The object hierarchy used to implement real/viable
interfaces is shown in Figure 6:

Object

Model

ValueModel

ValueHolder

BufferedValueHolder

ProtocolAdaptor

AspectAdaptor

BufferedAspectAdaptor

SelectionInData

SelectionInList SelectionInTree

RangeAdaptor

PluggableAdaptor

1

2

3

4

5

6

7

Figure 6: ValueModel class hierarchy.

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 15 -

ValueModel class (at 1) is an abstract class that provides the foundation for simple single-
attribute bean support. It also inherits from property change listener. The ValueHolder
class (at 2) is a class that extends ValueModel. Implementation of a read/write object
requires the BufferedValueHolder (3), which represents another ValueHolder that
maintains the new attribute name/value until a swap is required, say during a property
change event.

A standard bean interface can be implemented using the above approach if the
getValue/setValue pair can be adapted to a particular naming convention associated with
a particular attribute. This is achieved with the ProtocolAdaptor class (at 4), which adapts
the ValueModel to different interface protocols, and the AspectAdaptor
(5)/BufferedAspectAdaptor (6) classes, which are used for creating bean correlations. This
group is illustrated in Figure 7:

UI
Object

Value
Object

Domain
Object

setValue()

getValue()

Aspect
Adaptor

Aspect=“firstName”

setFirstName()

getFirstName()

SubjectChannel=”person”
Person

Figure 7: AspectAdaptor model and usage with shared channel. In this example a
second Aspect might be “lastName”, and the shared channel might be
“Person”.

The intent of the AspectAdaptor is to support the representation of an arbitrary java bean
using XML. For example, if a Person Class is being implemented (at 1), it might have
attributes for firstName and lastName. The Person Class would also have accessors
getFirstName/getLastName (at 2), and mutators setFirstName/setLastName (at 3). The
name of the class, Person, represents what is called the shared subject channel (at 4),
which provides the glue that associates the aspects firstName (at 5) and lastName
together with Person.

The combination enables a one-to-one mapping between XML components and a domain
object. The aspect adapter enables the conversion from the generic accessor/mutator to
the bean-specific (attribute-based) versions. Hence, getValue, with a SubjectChannel of
“person” and an AspectAdaptor of “firstName” produces an accessor/mutator pair of
getFirstName/setFirstName.

ToolShed Application Architecture

ToolShed is the presentation layer of WebTools2. This means that it is responsible for the
representation and rendering of pages and page content, for verifying and maintaining

3

1

2
5

4

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 16 -

data relationships concurrent with server requirements, and for supporting the flexibility the
project requires.

The reference implementation for ToolShed is based on a combination of technologies
and techniques, and demonstrated on the WebTools WebScan application. The
architecture is the same for WebSetup and other WebTools2 presentation components.
The interaction with the WebTools2 client, per se, isn’t depicted in this diagram at present.
Communications between client and server are mediated by the WebTools2 client.

The following sections will present the overall package model, followed by a simplified
workflow of how the project functions. These will be followed by discussions of the
processing tiers.

Package and Component Interactions

The project is divided into three major functional areas, as depicted by the pseudo
package/component diagram shown in Figure 8:

§ Parsing (includes customization, localization, page construction, exceptions, and
event handling)

§ Communications

§ Logic

Figure 8: ToolShed component diagram.

3

1 2

8

9

11

10

14 15

12

13 7 6 5

16

4

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 17 -

The primary mechanisms in this package diagram are highlighted in blue. Parsing (at 1) is
the primary ToolShed component, as the model is based on XML-based input setup and
configuration files. Communications (at 2) takes two forms: acquisition of the configuration
files, and data transactions. Finally, the underlying logic required to manage the tool but
cannot efficiently be captured in XML is represented in the Logic package (efi, at 3). Much
of this logic is directly associated with component rendering, some of which can be
handled through data validation (at 4).

Returning to the parsing functionality, ToolShed parses XML data files of three types:
setup/configuration, user interfaces (at 5), and object data (at 6). Object data embeds both
type requirements and inter-object rules (at 7). All parsing, and communications, must
maintain coherence with and synchrony with a single data model. The data model is
represented with XML Schemas for each of the ui and object types used by ToolShed (at
8). The parsing process identifies the content type in the XML files, but requires a
construction/generation phase to map the files to Java components.

The construction of the user interface, and the objects the interface will present, requires
mapping from XML elements to Java components. This requires non-interface classes
that are part of the logic package (at 3). At construction time, labels and other ui
component-related strings are localized (at 9) using string resources acquired at build time
from a Localization Server (at 10). Part of the construction phase is a mapping from efi ui
components to JFC (aka Swing) components, which assign event listeners and event
handlers to the components. Once the construction phase is complete the interface can
be rendered and respond to events.

As mentioned, a primary role of the communications package is to interact with the Fiery
Server at run time, to acquire data or modify setup values. The ToolShed communications
package is divided into client (at 11) and server (at 12) components, both of which depend
on the same XML Schema (at 8) to map data types across the network interface. In this
manner, the client and server logic can be implemented on different architectures and in
different languages. The client package is part of the logic component (at 3), while the
server package is its own component outside of ToolShed proper.

Data validation (at 4) is a significant aspect of the ToolShed architecture, because it is
defined in the XML files and follows an XML Schema. This enables the ui-specific logic
associated with objects (types and interactions) to be represented outside of the internal
program logic, and thus to be shared across systems. ToolShed employs three validation
types: type 1 (at 13), which is used to validate object existence; type 2 (at 14), which is
used to validate object value type, range, and defaults; and type 3 (at 15), which enforces
inter-object constraints. These validation types are part of the ToolShed exception
handling mechanism.

In many page models there are data constraints that exist across multiple fields or views.
These cannot be handled by a simple data validation mechanism. The ToolShed
approach to resolving these constraints is to use a rule-based engine (at 16). When a user
makes a modification to the value of a component, the engine cycles through the rules
associated with the related functionality, identifies violations based on values elsewhere in
the system, and interacts with the user to ameliorate the conflicts. The rules (at 8) are
parsed from RuleML into a Java-based knowledge base at read time.

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 18 -

Workflow Mechanisms

Figure 8: presents the packages that will be used to implement the ToolShed project, but
not their flow. Specific mechanisms will be shown later, in greater detail, but the overall
workflow is depicted in Figure 9:

Figure 9: ToolShed page construction workflow diagram.

The configuration phase (depicted by the blue trapezoid at 1) involves the page designer
and product manager, who determine which of the functional components will be in their
product, whether they will be displayed, what the look and feel will appear like, and what
the language will be. This is accomplished both by editing the setup document (at 2) and
by editing the page descriptions themselves with a visual XML IDE such as the ToolShed
Design Tool (at 3). This workflow component is depicted separately from the application
because it is being implemented as an independent application and used off-line by
product developers rather than by the Client Applications engineering team. This is the
component referred to by the first tool item at the beginning of this document.

The primary ToolShed workflow is depicted in Figure 10:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 19 -

Figure 10: ToolShed primary operations workflow diagram.

The application phase (depicted by the blue trapezoid at 1) is divided into launch and
interaction modes, both of which utilize the communications and rendering packages. In
launch mode, the applet or application (at 2) brokers communications with the server (at 3)
to obtain the setup, page, data, and constraint data files. During the interaction mode,
requests are sent to the server, and responses received from the server, with the notion of
updating the existing page models.

In both modes, rendering (shown at 4) is accomplished as a four-step process: (1)
parsing, (2) mapping XML to the Java bean model, (3) constructing the Swing page
model, and (4) rendering the page. The parsing process (at 5) is noteworthy because it
mandates conformation with an XML Schema that represents the possible page, data,
and constraint objects, their attributes, and their attribute types. Conformation with the
schema guarantees the page designer that their pages will render, and it guarantees the
applet/application developer that only conforming models will be dispatched to the
applet/application. Also embedded in the model are the data-object constraints. These are
represented in RuleML and parsed into Mandarax-type Java rules. Initial data/constraint
validation is performed during object construction (at 6), and is then performed whenever
a data value is modified during event handling (at 8). Once object construction is
complete, the Java objects can be mapped to their Swing counterparts (at 7), listeners
added to the Swing components, and the page can be rendered.

Package and Class Identification

The individual packages will now be presented in greater detail, by type. The following
class packages implement these object types and will be presented in the following order:

§ XML Schema validation of UI XML files

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 20 -

§ The xml packages (xml, model)

§ The beans package associated with XML Lite

§ The ui package

§ Project specific (appls)

XML Schema for Model Validation

XML Schema is to XML that Java classes are to Java instance objects; it defines the
organizational structure that instance files are validated against. By providing XML
Schema for the UI and Object models, the notions of product developer flexibility are
supported, because if they product validated XML files according to the schema provided
by Client Applications, they files will render/function properly. A sample XML Schema that
matches the kinds of applications that ToolShed supports is provided in Figures 8-15
below. The overall structure is illustrated in Figure 11:

Figure 11: XML Schema for overall user interface application modeling.

The ‘-/+’ notation in the figure (e.g., at 1) has the standard meaning, that the item can be
further expanded. The ‘…’ (in oblong, at 4) notation means that the items that follow it
represent a required sequence of elements, and that the order must be maintained.

Notice that a general UI Specification is comprised of three components: (1) actions,
which represents applicable behaviors on the interface components; (2) views, which
represents the UI components and their layout, respectively; and (3) dialogs, which
represent the exception-handling UI components and their layout, respectively.

The Actions component is further fleshed out in Figure 12:

Figure 12: XML Schema expansion for the Actions component.

The Actions component simply identifies the action to be performed when referenced, and
defines attribute values for action name, the action to perform, and the associated value.

3

1

2
4

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 21 -

The DialogType component is fleshed out further in Figure 13:

Figure 13: The DialogType XML Schema component.

The ViewType component is shown in Figure 14:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 22 -

Figure 14: XML Schema expansion for the ViewType component.

The ViewType component (at 1) is comprised of the elements that can be used to
construct the user interface. Common to most components is the Constraints component,
which represents the component location, size, and border attributes (at 2). Common to all
container components is the layout manager used to arrange components within the
container (at 3). The ViewType, as a container, has instances of both the Constraints and

3

1

2

4

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 23 -

LayoutManager components. It can also recursively contain other instances of the View
component (at 4). The remaining component types are the items that can be placed into a
View component. The dotted lines leading to all of the components within ViewType
(except LayoutManager) mean that these components are optional. The “0..oo” notation
under many of the components means that any number of this type of component can be
included in the view. Notice that the view can have only one Constraints and
LayoutManager instance, as well as a single Bean component instance.

The nineteen components defined in the ToolShed XML Schema represent the visible
components that will be supported by ToolShed when it is fully implemented. Many of
these components have no utilization in current product designs but are anticipated for
future designs and, as such, are included as part of the schema.

The ConstraintsType object is shown in Figure 15:

Figure 15: The object ConstraintsType component.

Most visual components have border and bounds constraints, so these are represented at
the type level. The Border component has three attributes: side, width, and height, which
describe where the text will be located and the size of the border itself. The Bounds
component describes placement and size of the component, and has x, y, width, and
height attributes.

The LayoutManagerType component is fleshed out in Figure 16:

Figure 16: LayoutManager XML Schema component.

The LayoutManager component represents a selection between five container layout
types: (1) border layout, (2) null layout, (3) grid layout, (4) flow layout, and (5) gridbag
layout. These have exact counterparts to Java awt layout components by the same

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 24 -

names. All but the Null Layout component have two attributes: hgap and vgap, which
define the horizontal and vertical gaps between components within the layout.

In a border layout there are five locations in which components can be placed, each
associated with a compass rosette: north, south, east, west, and center.

In a flow layout components are laid out in the order that they are added to the container,
but there is an additional attribute: alignment, which defines the alignment order of
components (left to right, right to left).

The grid layout describes components as an array, so it has two attributes: rows, cols that
define the number of items that it contains. Each grid cell takes on the size of the largest
item contained.

The gridbag layout is the most complex layout mechanism, allowing for grid layout where
the cells can have differing sizes. As a result there must be a constraints object that tells
how the cells will relate to one another, with ten attributes: gridx, gridy, gridwidth,
gridheight, weightx, weighty, anchor, fill, padx, and pady. See Java documentation for
explanations on how to use gridbag layout attributes to create complex layouts.

The Bean component is shown in Figure 17:

Figure 17: Bean XML Schema component.

Beans are objects that either extend the functionality of known Swing components or are
data/processing specific within the com.efi subhierarchy. As such, they listen to events
and thus the Listeners component in addition to the Constraints component.

A table showing the attributes of the remaining components is shown as Table 2:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 25 -

View Component
Attribute Name Attribute Description

type Not sure what this is (string)
background Background color (hex color string)
width Width of view (int)
height Height of view (int)

TabbedView Component
Attribute Name Attribute Description

title String to associate with the overall component
tabplacement Placement on the component (int) for left, right, top, bottom
layoutpolicy An integer representing what?
model The model used to populate the tabs (string)
selectedtab The default tab for the component (int)

Label Component
Attribute Name Attribute Description

horizontalalignment Alignment fo the label (int) for left or right
icon Optional icon to associate with the label (string path)
textposition ? (string)
icontextgap Gap between the icon and the label text (int)

ActionButton Component
Attribute Name Attribute Description

text The text associated with the action
action The action to take when selected (string)
icon The optional icon to associate with the button (string path)

ToggleButton Component
Attribute Name Attribute Description

text The text to associate with the toggle button (string)
action The action to take when the button is selected (string)
icon The optional icon for the component (string path)
selected The selected item (int)

RadioButton Component
Attribute Name Attribute Description

text The text to show with the radio button (string)
model The model used to fill the radio button
horizontalalignment The horizontal alignment of the items (string)
onvalue ? (token)
icon An optional icon for the radio button (string path to image)
selected Which item is selected by default (int)

Checkbox Component
Attribute Name Attribute Description

action The action to take when an item is selected (string)
icon An optional icon to associate with the checkbox (string path)
text The text to associate with the checkbox (string)
selected The default selected item (int)

InputField Component
Attribute Name Attribute Description

model The model associated with the field
columns The number of default columns visible in the field (int)
type Not sure what this means today (string)

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 26 -

action The action to take on selection (string)
ComboBox Component

Attribute Name Attribute Description
model The model used to fill the box
text A string label for the box
action The action to perform when an item is selected (string)
numVisibleRows The number of rows visible in the box (int)
selectedIndex The number of the selected item (int)

Table Component
Attribute Name Attribute Description

model The model used to fill the table
rowColSectionEnabled A Boolean representing whether rows and columns can be selected
colSelectionEnabled A Boolean representing whether columns can be selected
gridColor The color of the grid (hex string representing color)
rowHeight The height of table rows (int)
rowMargin The margin between rows (int)
selectionFGColor The foreground color of selected items (hex color string)
selectionBGColor The background color of selected items (hex color string)
showGrid A Boolean representing whether to show the grid boundaries
showHorizontalLines A Boolean representing whether to show row boundaries
showVerticalLines A boolean representing whether to show column boundaries

List Component
Attribute Name Attribute Description

model The model used to fill the list with items
cellHeight The height of each cell (int)
cellWidth The width of each cell (int)
orientation The orientation of the list (int)
selectedIndex Which item in the list is selected (int)
selectedBGColor The background color of the selected item (hex string for color)
selectedFGColor The foreground color of the selected item (hex string for color)
visibleRows The number of rows that are visible (int)

Tree Component
Attribute Name Attribute Description

model The model used to fill the tree elements
editable A Boolean describing whether the tree is editable
rowHeight An integer describing the height of rows
scrollable A Boolean describing whether the tree is scrollable
showRootHandles A Boolean describing whether to show the handles
visibleRowCount An integer describing how many rows to of the tree to display

Menu Component
Attribute Name Attribute Description

selectedComponent An integer describing which menu item is selected by default
ProgressBar Component

Attribute Name Attribute Description
model The data model used to make it work
orientation An integer describing the progress bar orientation
min The minimum value for the bar (int)
max The maximum value for the bar (int)
progressString An associated display string

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 27 -

value The default value (int)
ToolBar Component

Attribute Name Attribute Description
orientation An integer describing the orientation (horizontal/vertical) of the bar
rollover A Boolean representing whether rollover is supported

ToolTip Component
Attribute Name Attribute Description

parent Maybe not necessary, indicates associated object (by name)
text The text in the tooltip

Table 2: Visual component attributes.

Most of the remaining components have only a Constraints component in addition to their
element-level attributes. The ToolBar component is a container and so it also has a
LayoutManager subcomponent, as shown in Figure 18:

Figure 18: ToolBar XML Schema component.

XML Packages

XML is the mechanism whereby ToolShed functions. All data (layout, data, and
constraints) is provided and modified through XML-formatted files. The UI-related XML
files are subdivided into three general types: (1) models, which describe objects; (2) views,
which describe interfaces and, possible, values of objects; and (3) actions, which describe
operations on models and ui components. The overall package diagram for the XML
package is shown in Figure 19:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 28 -

Figure 19: XML package diagram.

Much of the operational functionality for the XML package resides in the JUIBuilder class
shown at 1 in the figure). The JUIBuilder class will be described inline with the other two
packages, model (at 2), and ui (at 3) within the XML package. Models, views, and actions
are managed with manager objects (UIConfigurationManager, UIActionManager,
UIModelMappingManager, ActionModelManager, ModelTemplateManager,
BeansManager, and UIConstraintManager, at 4), which are collection objects. The overall
initialization method, initializeUI, is shown below in Figure 20:

3 1

2

4

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 29 -

Figure 20: JUIBuilder class initializeUI method.

The initializeUI method creates the collections (shown at 1) used to manage the various
object types. The current node is then checked to see if it is a view (at 2), a model (at 3), or
an action (at 4), in which case the element is mapped by way of an initialization method to
the appropriate Java class instance and added into the appropriate manager collection.
When the entire file has been parsed, the resulting models are validated (at 5), and the UI
objects are mapped to their Swing counterparts (at 6) and rendered.

3

1

2

6

5

4

1

1

1

1

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 30 -

Models

Models represent the data objects that are used in the interface, and make use of the XML
Lite architecture, which is implemented with the XML Model package. Both static and
dynamic models are implemented with this package.

XML Model Package

Model creation is performed in ToolShed using a subset of the XML Talk architecture,
(XML Lite), as Java classes. Specifically, the clases implemented are:

§ ValueModel

§ ValueHolder

§ ValueData

§ AspectAdaptor

§ BufferedAspectAdaptor

§ SelectionInList

§ ValueModelManager

The class diagram for this hierarchy is shown in Figure 21:

Figure 21: Demonstration model ValueModel class hierarchy.

3 1 2

7

6

5 4

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 31 -

As mentioned previously, the ValueModel (at 1) is an abstract class that defines a simple
attribute, and a ValueHolder (at 2) extends ValueModel. AspectAdaptor (at 3) and
BufferedAspectAdaptor (4) are used to represent bean attributes. SelectionInList (at 5) is
used to represent a select collection. ValueData (at 6) is an abstract class used to
represent data objects and collections, and ValueModelManager (7) is used to manage
the ValueModel instances as a collection (currently a HashTable).

There are two types of models that are created in ToolShed: (1) static models, and (2)
dynamic models. Static models aren’t modified at load time by dynamic data, while
dynamic models are.

Static Model Creation

An example of ValueHolder, AspectAdaptor, and SelectionInList is shown in Figure 22:

 <STATIC>
 <VALUEHOLDER name="person" value="getPerson"/>
 <ASPECTADAPTOR aspect="firstNameP" name="firstName" subjectChannel="person"/>
 <ASPECTADAPTOR aspect="lastNameP" name="lastName" subjectChannel="person"/>
</STATIC>

Figure 22: XML examples of ValueHolder and AspectAdaptor components in a static
model.

The manner in which these items are constructed in Java (currently in the JUIBuilder
class) is depicted in the following figures. The overall method is createStaticModels, and is
shown as a sequence diagram in Figure 23:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 32 -

Figure 23: [JUIBuilder] createStaticModels sequence diagram.

Notice that this method is a switching method, and dispatches control to one of
createValueHolder (at 1), createAspectAdaptor (at 2), createBufferedAspectAdaptor (at 3),
or createSelectionInList (at 4), which will be shown next. The createValueHolder sequence
diagram is illustrated in Figure 24:

3

1

2

4

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 33 -

Figure 24: Sequence diagram for [JUIBuilder] createValueHolder.

In createValueHolder, the ValueHolder instance (at 1) is populated (at 2) and then added
into the ValueModelManager (at 3, 4). The createAspectAdaptor sequence diagram is
illustrated in Figure 25:

3

1

4

2

2

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 34 -

Figure 25: [JUIBuilder] createAspectAdaptor sequence diagram.

In this figure, the AspectAdaptor object (at 1) is instantiated, populated, and then added
into the ValueModelManager (at 3, 4).

Dynamic Model Creation

Dynamic models can also be read using the same mechanisms and classes as static
models, but also accommodate templates and mappings. The XML for an example
dynamic model is illustrated in Figure 26:

4

4

2

3

1

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 35 -

 <DYNAMIC template="select-model" id="select-model1">
 <template selection="a">
 <VALUEHOLDER name="person" value="getPerson"/>
 <BUFFEREDASPECTADAPTOR aspect="firstName" name="firstName" subjectChannel="person"/>
 <BUFFEREDASPECTADAPTOR aspect="lastName" name="lastName" subjectChannel="person"/>
 <SELECTIONINLIST name="persons" selectionHolder="person" list="getPersons"/>
 <mappings>
 <mapping key="tempModel" value="person" />
 <mapping key="listModel" value="persons" />
 <mapping key="model1" value="firstName" />
 <mapping key="model2" value="lastName" />
 </mappings>
 </template>
 <template selection="b">
 <VALUEHOLDER name="employee" value="getEmployee"/>
 <ASPECTADAPTOR aspect="firstName" name="firstName" subjectChannel="employee"/>
 <ASPECTADAPTOR aspect="employeeID" name="employeeID" subjectChannel="employee"/>
 <SELECTIONINLIST name="employees" selectionHolder="employee" list="getEmployees"/>
 <mappings>
 <mapping key="tempModel" value="employee" />
 <mapping key="listModel" value="employees" />
 <mapping key="model1" value="firstName" />
 <mapping key="model2" value="employeeID" />
 </mappings>
 </template>
</DYNAMIC>

Figure 26: XML for dynamic model.

As can be seen in the example XML, the dynamic model, like the static model, is
constructed using ValueHoder, AspectAdaptor, BufferedAspectAdaptor, and
SelectionInList components. The difference is that the dynamic model can be associated
with more than one model, and the model can be switched at run time. As such, it defines
templates that are used to represent the possible models, and mappings between the
items and the appropriate model. For example, template “a” (at 1) uses a “person” model,
where as template “b” (at 3) uses an “employee” model. Each template in the dynamic
node must have a mapping to the model attributes, using the “mapping” element. The
mapping for template “a” is shown at (2), and for template “b” (at 4). The sequence
diagram for parsing dynamic models, using the createDynamicModels method, is depicted
in Figure 27:

3

1

2

4

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 36 -

Figure 27: [JUIBuilder] createDynamicModels sequence diagram.

In this figure, any static models that must be created for the node are done so at (1), and
the resolution of template and template mappings is done at (2) with a call to
resolveDynamicModelMappings. The latter parses the nodes children for any items
marked “mapping” and calls a method that iterates through the node to get the attribute
names and keys, and to add them to the template model manager. The
createBufferedAspectAdaptor sequence is shown, since it appeared in Figure 16, in
Figure 28:

3

1

2

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 37 -

Figure 28: [JUIBuilder] createBufferedAspectAdaptor sequence diagram.

Notice that, like the AspectAdaptor in Figure 15, the BufferedAspectAdaptor retrieves the
ValueModel (at 1) sets the subject (at 3), and adds the ValueModel to the model manager
(at 4). The createSelectionInList flow (for the SelectionInList item shown in Figure 16) is
shown in Figure 29:

4

2

3

1

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 38 -

Figure 29: [JUIBuilder] createSelectionInList sequence diagram.

In this figure, a SelectionInList object is first created (at 1), the name is assigned from the
element data (at 2), and the ValueModel is retrieved and set to the selection holder (at 3).
This is the same as the AspectAdaptor. The BuffereAspectAdaptor differs in that its value
can be changed dynamically (for example to update the value in a UI object), so it has a
buffering adaptor called the associate. This is set (at 4). The data is then retrieved from the
element (at 5), and added into the model manager (at 6, 7).

Notice that all four methods (createValueModel, createAspectAdaptor,
createBufferedAspectAdaptor, and createSelectionInList) follow the same strategy of

3

1

2

7

6

5

4

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 39 -

instantiating and populating the object from the XML data, and then adding the object
instance into the ValueModelManager collection.

Views

Views represent the UI components themselves. They include layout managers, panels,
and the specific components that reside in same. An example XML depicting a fragment
of a view is shown in Figure 30:

<VIEW name="top">
 <CONSTRAINTS>
 <BORDER side="North" width="250" height="40"/>
 </CONSTRAINTS>
 <LAYOUTMANAGER>
 <BORDERLAYOUT hgap="0" vgap="0"/>
 </LAYOUTMANAGER>
 <VIEW name="right">
 <CONSTRAINTS>
 <BORDER side="East" width="250" height="40"/>
 </CONSTRAINTS>
 <LAYOUTMANAGER>
 <NULLLAYOUT />
 </LAYOUTMANAGER>
 <LABEL text="MailBox" name="MailBox" horizontalalignment="LEFT">
 <CONSTRAINTS>
 <BOUNDS x="10" y="10" width="60" height="25"/>
 </CONSTRAINTS>
 </LABEL>
 <INPUTFIELD model="Mailbox_Field"
 columns="20"
 name="Mailbox_Field"
 type="Integer"
 action="refresh">
 <CONSTRAINTS>
 <BOUNDS x="70" y="10" width="40" height="25"/>
 </CONSTRAINTS>
 </INPUTFIELD>
 <ACTIONBUTTON name="Refresh" text="Refresh" action="refresh">
 <CONSTRAINTS>
 <BOUNDS x="120" y="10" width="80" height="25"/>
 </CONSTRAINTS>
 </ACTIONBUTTON>
 </VIEW>
 <VIEW name="left">
 <CONSTRAINTS>
 <BORDER side="West" width="120" height="40"/>
 </CONSTRAINTS>
 <LAYOUTMANAGER>
 <NULLLAYOUT />
 </LAYOUTMANAGER>
 <ACTIONBUTTON name="About" text="About" action="about">
 <CONSTRAINTS>
 <BOUNDS x="10" y="10" width="80" height="25"/>
 </CONSTRAINTS>
 </ACTIONBUTTON>
 </VIEW>
</VIEW>

Figure 30: XML fragment for a View.

The view is decomposed into standard components in the XML: view (at1), which can
include subviews; constraints (at 2), which refer to properties of the object they reference.
For example, the labeled constraint refers to the view border; layout manager (at 3, which

3

1
2

6

5

4

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 40 -

defines the placement of components within the view; and components (label, at 4), input
field (at 5), and action button (at 6).

UI-related components are parsed using the JUIBuilder initializeUI method, which calls
intializeView, which calls initializeComponent. The sequence diagram for this last method
is shown in Figure 31:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 41 -

5

1

4

8

7

6

2

3

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 42 -

Figure 31: JUIBuilder initializeComponent method, which is used to map XML nodes to
Java UI components.

As can be seen, the initializeComponent method is a switching method, based on the
node name in the XML element. Items at labels (1-8) refer to the different UI components
currently in use in the demonstration prototype, namely: Bean, MenuBar, ComboBox,
Label, InputField, RadioButton, ActionButton, and ListBox, though other elements can be
parsed in the method. When one of these items exists in the XML, the proper component
based on the name of the node is initialized. The various initializations wrap instantiations
to Swing classes in ToolShed-specific components, copy the properties parsed from the
XML into the components, and add the resulting components to a component manager.
This process is illustrated, for combo box, in Figure 32:

Figure 32: JUIBuilder initializeComboBox method.

The purpose of initializeComboBox, like that of the other UI component initialization
methods, is to retrieve the component-specific data from the XML, to instantiate the proper
Swing component, and to add the component to the collection. Before this process takes
place, it must first be determined whether or not this UI component is hidden (at 1). If not,
then the second step is to find out if it is set to fill (at 2). Then the object can be instantiated
(at 3). This is followed by retrieving the component data from the model template manager
(at 4, 5), and adding the object component to the mapping manager (6, 7).

5

1

4

7

6

2

3

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 43 -

UI Package

Each of the initialization methods in Figure 31: is used to map an XML element to a Swing
Java class. This is mediated by a package of classes called the UI package, presented in
Figure 33:

Figure 33: UI package components.

The components that extend the abstract class UIModelComponent (shown at 1) each
implement a particular Swing class. The UIModelComponent class extends
PropertyChangeListener, so these components can accept event data and perform
updates. Thus the classes extending UIModelComponent map as follows:

§ ButtonComponent a JButton

§ CheckBoxComponent a JCheckBox

§ ListComponent a JList

§ TypeTextComponent a JTextField

§ LabelComponent a JLabel

1

2

3

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 44 -

§ ComboBoxComponent a JComboBox

§ RadioButtonComponent a JRadioButtonGroup

§ TreeComponent a Jtree

§ ProgressBarComponent a JProgressBar

§ ViewComponent a JPanel

§ DialogComponent a JDialog

§ TableComponent a JTable

§ ToolBarComponent a JToolBar

§ TabbedPanelComponent a JTabbedPanel

The classes that inherit from the LayoutManager abstract class (at 2) implement the
standard layout types (null, flow, border, grid, gridbag, and card).

Finally, the classes that inherit from LayoutConstraint (at 3) define the types of constraints
that can be placed on these objects.

Beans Package

The last class package that is used by ToolShed to produce the user interface from XML
is the beans package, which is a collection of custom objects developed at EFI. The beans
package diagram is shown in Figure 34:

Figure 34: Beans package of EFI custom classes.

1

2

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 45 -

Only two of the beans package classes: EITPanel (at 1) and EITableListenerIntf (at 2) are
used in the current prototype. Note: It has been decided that any custom components
developed by EFI for ToolShed will inherit from Swing classes, so these classes will be
modified to inherit from Swing classes or will be eliminated in the final ToolShed design.

Actions

Actions define what behavior can take place in the user interface other than updating
widget values, which is performed by the property change listeners. The related XML
elements are the ACTIONS and PERFORMACTION elements, as exemplified in Figure
35:

<ACTIONS>
 <PERFORMACTION name="delete" text="Delete" method="delete"/>
 <PERFORMACTION name="save" text="Save" method="save"/>
 <PERFORMACTION name="format" text="Format" method="format"/>
 <PERFORMACTION name="refresh" text="Refresh" method="refresh"/>
 <PERFORMACTION name="about" text="About" method="about"/>
</ACTIONS>

Figure 35: XML example of an actions segment. This one defines the actions in menus.

This figure illustrates the mechanism of registering actions for the application. In particular,
note the “delete” method. When parsed, the delete method and its parameters are added
to the ActionModelManager collection and then becomes available for use in UI
components such as buttons. This is done in the initializeActions method, shown in Figure
36:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 46 -

Figure 36: JUIBuilder sequence diagram for initializeActions.

The entry parameter to initializeActions is an “actions” element. The children of this
element are iterated upon and any that are “performaction” elements (at 1) are then added
to the action model manager (at 2, 3). The XML mapping between an action defined and
an action applied to a widget is illustrated in Figure 37:

<ACTIONBUTTON name="Delete" text="Delete" action="delete">
 <CONSTRAINTS>
 <BOUNDS x="10" y="10" width="80" height="25"/>
 </CONSTRAINTS>
</ACTIONBUTTON>

Figure 37: XML example showing how the “delete” action from the Figure 24 is used in
an ActionButton.

This XML fragment relates an ActionButton (which is mapped to a ButtonComponent and
becomes a JButton Swing component) to the delete action that was registered in the
ACTIONS element. That is, the actions possible to perform are registered and then
referenced in the actual elements. Part of the verification process, presumably, makes
certain that any action referenced in a UI component has been registered in the ACTIONS
element.

Application-Specific Packages (appls)

Event handling in ToolShed is partly a UI-specific task, and partly a behavioral task. The
UI components must listen to events and respond to them, but business logic support is

1

2

3

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 47 -

needed to respond to events in a coherent and coordinated fashion. Although it is
theoretically possible to implement all of the business logic using the same rule-based
mechanisms as will be used for UI constraint validation (below), it is unlikely that this mode
of evaluation can be as effective as direct object development. As such, the behaviors of
existing objects will be migrated from WebTools 1 and refactored to accommodate the
ToolShed architecture. To be completed.

Data Validation

Validation is performed at three stages in the ToolShed model: (1) during generation when
the XML files are validated against the XSD, (2) at run time when the UI models are added
into the manager collections, and (3) at runtime when new events are handled.

Generate-Time Validation

When the files are initially created, they must satisfy the constraints imposed by the XML
Schema (XSD) that defines the models and their data elements. This level of validation
essentially certifies that every element in the model follows the model definition and that
the data elements included therein follow the type and range definitions of the model. This
level of certification is static, in that it is an initialization phase of validation only.

Runtime Validation

There are three types of runtime validation: (1) models have values, (2) models have valid
types and values, and (3) objects have correct values with respect to the entire
interface/server. They will sometimes be referred to as Type 1, Type 2, and Type 3
validation in this document. The current prototype has a validation mechanism that meets
the first requirement. That is, a model is valid if it has a value/object associated with it. This
will be called object, or Type 1, validation. Validation, in this context, means only that since
there is an object associated with the component, there is reasonable cause to assign a
property change listener to it and, otherwise, to ignore it. This mechanism will be
described in this section, and the second and third validation mechanisms will be
discussed in the following sections.

Object Validation

During initialization, data values may be provided as initial/default values by the product
designers or by server requirements. These may be validated by the design application,
but they also may not, so a software validation is needed to simplify the client-side
processing. This mechanism is invoked during initialization. In the current demonstration
prototype, every page that is displayed executes an [JUIBuilder] initializeUI method, which
is re-presented from Figure 14 below, as Figure 38:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 48 -

Figure 38: [JUIBuilder] initializeUI method reproduced from Figure 10. Focus is on
validateModels call.

After all models have been parsed, instantiated into their respective UI classes, and added
into the model collections, they must be validated. The calls to validateModels (shown at
1), and resolveUIModelMapping (at 2), are the final initialization steps. The validateModels
method is further delineated below, as Figure 39:

1

2

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 49 -

Figure 39: [JUIBuilder] validateModels method.

The validateModels method serves two purposed. First, it calls the validateModels method
in the ValueModelManager (shown at 1). Second, it iterates through all the models that
were validated in the model manager (at 2), gets each model and its name, and adds a
property change listener to each subbuilder that matches a name (at 3). So what is a
subbuilder? Recall that the presentation may be comprised of arbitrarily deeply nested UI
components. These nested components are the subbuilders. The ValueModelManager
validateModels method, itself, is further broken down in Figure 40:

1

2

3

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 50 -

Figure 40: Sequence diagram for [ValueModelManager] validateModels.

The ValueModelManager validateModels method is similar to the JUIBuilder version, in
that it first checks to see if a model is validated and also adds property change listeners to
the object. It achieves this by first retrieving the model names from the manager collection
as an enumeration (shown at 1) and then iterates through this enumeration. In the
iteration, it gets a model and checks to see if it is already validated (at 2). If not, an attempt
to validate it is made by calling validateModel (at 3). The method then recreates the
enumeration from the manager and iterates on the collection (at 4). For any item that is a
SelectionInList element (at 5), a property change listener is added to its value holder
instance (at 6, 7).

The validateModel method is further decomposed in Figure 41:

1

2

3

4
5

6

7

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 51 -

Figure 41: [ValueModelManager] validateModel method sequence diagram.

The validateModel method checks to see if there is an associate (at 1), meaning that there
is a ValueHolder for the model. If not (at 2), then if the model is also a SelectionInList the
method creates a new ValueHolder (at 3), sets its name to the name of the associate (at
4), and binds the ValueHolder to the model (at 5).

Data Type and Value Validation

During runtime, data values can be provided by users or by the system in response to
user actions, such as typing data into text fields. In the case where data is provided by
users, the data must be revalidated according to the model definition provided at read
time. The data file must be formatted in such a way that it can be read both by the data
type and value validator and by the constraint validation mechanism. Depending on the
communications source (SOAP or SNMP/Harmony/ Dictionary), the data may take
different forms, so the same data must be validated based on the source, the type it is
supposed to be implemented as, and its value. This will be referred to as Type 2
validation.

Representative data types and default value tests for Server Setup are shown below, as
taken from the Fiery WebTools2 Product Specification, dated 4/16/2003. The contents of
section 11.1 of that document have been translated into three tables, one for server setup,
network setup, and printer setup, as shown in Tables 2-4 below. It should be noted that

1

2

4

5

3

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 52 -

the representation mechanisms described in this section apply equally well to any
application that can be presented by ToolShed, and that setup has been illustrated due to
the fact that it is the single most complicated application presented by ToolShed and thus
covers the variety of functional issues that must be addressed by the model.

UI Tab Option Data Type Data Value/Range
Server Setup Server Name String 15 chars max
Server Setup Date String (3) dd, mm, yy
Server Setup Time String (2) hh, mm, 24-hr clock, 00-23
Server Setup Enable Printed Queue boolean true (def)

false
Server Setup Jobs Saved in Printed Queue int 10 (def), 1-99
Server Setup Preview While Processing boolean true

false (def)
Server Setup Use Character Set String (select) Macintosh

Windows (def)
DOS

Server Setup Print Start Page boolean true
false (def)

Server Setup Enable Printing Groups boolean true
false (def)

Server Setup Clear Each Scan Job String (select) Delete All Scan Jobs
1 day after scan (def)
1 week after scan
Manual

Server Setup Clear Each Scan Job Now boolean true
false (def)

Server Setup Administrator String 19 chars max
Server Setup Operator String 19 chars max
Server Setup Auto Print Job Every 55 Jobs boolean true

false (def)
Server Setup Auto Clear Job Every 55 Jobs boolean true

false (def)
Server Setup Job Log Page Size String (select) Tabloid/A3

Letter/A4
Server Setup Fiery Contact Name String 18 chars max
Server Setup Fiery Contact Phone String 18 chars max
Server Setup Fiery Contact E-mail String
Server Setup Device Contact Name String 18 chars max
Server Setup Device Contact Phone String 18 chars max
Server Setup Device Contact E-mail String

Table 3: Server Setup data types and (default/range) values.

Records appearing in cyan refer to requirements from the Fiery Product Specification
5.5e, dated 2/28/2003 that failed to appear in Fiery Product Specification dated 4/16/2003.
They are retained but highlighted in this document until their status is ascertained.
Although non-string values are identified in this table, it should be clear to the reader that
all the values can be represented as strings and have in past incarnations of WebTools.
Similar values are tabulated, for Network Setup, in Table 4:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 53 -

UI Tab Option Data Type Data Value/Range
Network Setup Enable Ethernet boolean true (def)

false
Network Setup Ethernet Speed String (select) Auto Detect (def)

1 Gbps
100 Mbps Full Duplex
100 Mbps Half Duplex
10 Mbps Full Duplex
10 Mbps Half Duplex

Network Setup Enable Apple Talk boolean true (def)
false

Network Setup Apple Talk Zone String (select) network defined, only enabled
when the Enable Apple Talk is
‘true’

Network Setup Enable TCP/IP for Ethernet boolean true (def)
false

Network Setup Enable AutoIP for Ethernet boolean true (def)
false, only enabled when
Enable Ethernet is ‘true’

Network Setup Select Protocol String (select) DHCP (def)
BOOTP
Only enabled when Enable
Ethernet is ‘true’

Network Setup IP Address String (4) 127.0.0.1 (def, network defined
Fiery address), user editable,
only enabled when the Enable
Ethernet is ‘true’ and when the
AutoIP is ‘false’. Each value is
0-255.

Network Setup Subnet Mask String (4) 255.255.255.0 (def), enabled
only when Enable Ethernet is
‘true’ and when AutoIP is ‘false’.
Each value is 0-255

Network Setup Enable Gateway Automatically boolean true (def)
false

Network Setup Gateway Address String 127.0.0.1 (def), user editable
Network Setup Enable TCP/IP for Token Ring boolean true (def)

false
Network Setup Enable DNS boolean true (def)

false
Network Setup Get DNS Address Automatically boolean true (def)

false
Only enabled if AutoIP
configuration is ‘true’

Network Setup Primary DNS Server IP Address String 127.0.0.1 (def), only enabled if
AutoIP Configuration is ‘false’

Network Setup Secondary DNS Server IP
Address

String 127.0.0.1 (def), on enabled if
AutoIP Configuration is ‘false’

Network Setup Domain Name String Only enabled if AutoIP
Configuration is ‘false’

Network Setup Use DNS on String (select) Any (def)

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 54 -

Ethernet
Token Ring
Only enabled if AutoIP
Configuration is ‘true’, token
ring is installed on the Fiery

Network Setup Host Name String Only enabled if AutoIP
Configuration is ‘false’

Network Setup Configure IP Ports boolean true
false (def)

Network Setup Enabled IP Ports String 80 (HTTP)
137-139 (NETBIOS)
161-162, (SNMP)
515 (LPD)
631 (IPP)
9100-9103 (9100)
EFI Ports
All (by default) are selected,
any deselected also disable the
associated service

Network Setup Enable IPX Auto Frame Type boolean true
false (def)

Network Setup Select Frame Types String (select) Ethernet 802.2
Ethernet 802.3
Ethernet II
Ethernet SNAP
Token Ring
Token Ring SNAP

Network Setup Clear Frame Types boolean true
false (def)

Network Setup Enable LPD boolean true (def)
false

Network Setup Enable PServer boolean true
false (def)

Network Setup NetWare Server PServer Poll
Interval in Seconds

int 15 (def), 1-3600 seconds

Network Setup Enable NDS boolean true
false (def)

Network Setup Select NDS Tree String (select) Network defined
Network Setup Delete Bindery setup and

continue
boolean true

false (def)
Network Setup Is user login needed to browse

NDS tree?
boolean true

false (def)
Network Setup NDS Tree Name String Network defined
Network Setup Current path String Network defined
Network Setup Enter Password String
Network Setup Current path String Network defined
Network Setup Enter Your Print Server

Password
String

Network Setup Server should look for print
queues in

String Entire NDS tree (def), network
defined

Network Setup NDS Tree Name String Network defined

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 55 -

Network Setup Current path String Network defined
Network Setup Choose File Server String Network defined
Network Setup Supported Servers String Network defined
Network Setup Remove support for String Network defined
Network Setup Select File Server String Network defined
Network Setup Enter First Letters of Server

Name
ch ‘A’, user defined

Network Setup Add Server String ‘AAAAA’, network defined
Network Setup Add Server String ‘Server1’, network defined
Network Setup File Server Login String
Network Setup Enter Your Login Name String ‘guest’, user defined
Network Setup Enter Your File Server Password String user defined
Network Setup NetWare Print Server String network defined
Network Setup Enter Your Print Server

Password
String user defined

Network Setup Enable Windows Printing boolean true (def)
false

Network Setup Use WINS Name Server boolean true
false (def)
enabled when Enable Windows
Printing is ‘true’, and when Auto
IP is ‘false’

Network Setup WINS IP Address String 127.0.0.1 (def), enabled only if
Use WINS Name Server is
‘true’

Network Setup Server Name String Enabled when Enable Windows
Printing is ‘true’, 15 chars max

Network Setup Server Comments String Enabled when Enable Windows
is ‘true’, 15 chars max

Network Setup Set Domain Name String Select from List (def)
Enter Manually
Enabled when Enable Windows
Printing is ‘true’, 15 chars max

Network Setup Workgroup or Domain String network defined
Network Setup Choose Domain String network defined
Network Setup Set Driver Type String PS (def)

PCL
Only available if Windows
Printing is supported, is ‘true’

Network Setup Enable Web Services boolean true
false (def)

Network Setup Enable IPP boolean true (def)
false

Network Setup Enable SNMP boolean true (def)
false

Network Setup Specify Read Community Name String Public (def)
User defined

Network Setup Specify Write Community Name String Public (def)
User defined

Network Setup Enable Port 9100 boolean true (def)
false

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 56 -

Network Setup Enable Parallel Port boolean true (def)
false

Network Setup Ignore EOF Character boolean true
false (def)

Network Setup Parallel Port Timeout (seconds) int 5 (def), 5-60
Network Setup Enable on Ethernet boolean true (def)

false
Network Setup Auto Select/Manual Select boolean true

false
Network Setup Select Frames boolean true

false, enabled when Manual
Select is ‘true’

Network Setup Bindery Setup boolean true
false (def)
Enabled when Enable PServer
is ‘true’

Network Setup Change Trees boolean true
false (def)
Enabled when Enable NDS is
‘true’

Network Setup Enable LPD Printing Service boolean true (def)
false

Network Setup Enable FTP Services boolean true (def)
false

Table 4: Network Setup data types and (default/range) values.

Records colored in orange lack sufficient information in the Fiery Product Specification,
dated 04/16/2003, to determine their data type or range of values. Records colored in
cyan were missing from the Fiery Product Specification, dated 04/16/2003. Cells colored
in green represent business logic that must be implemented using Type III rules. Similar
values, for Printer Setup, are shown in Table 5:

UI Tab Option Data Type Data Value/Range
Printer Setup Enable Print Queue boolean true (def)

false
Printer Setup Enable Direct Connection boolean true (def)

false
Printer Setup Enable Hold Queue boolean true (def)

false
Printer Setup Default Paper Sizes String (select) US (def)

Metric
Printer Setup Convert Paper Sizes String (select) No

Letter/Tabloid>A4/A3
A4/A3>Leter/Tabloid (def)

Printer Setup Page Order String (select) Forward (def)
Reverse

Printer Setup Default Color Mode String (select) CMYK (def)
Grayscale

Printer Setup Print Cover Page boolean true
false (def)

Printer Setup Allow Courier Substitution boolean true (def)

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 57 -

false
Printer Setup Print to PS Error boolean true

false (def)
Printer Setup Print Master boolean true

false (def)
Printer Setup Select Printer String
Printer Setup Printer Type String
Printer Setup Parallel Connection String (select) Print Queue (def)

Hold Queue
Direct Connection
Only published queues may be
selected

PCL Setup Paper Size String PPD defined
PCL Setup Orientation String (select) Portrait (def)

Landscape
PCL Setup Form Length int 60 (def), 5-128
PCL Setup Font Source String (select) Internal (def)

Softfont (Internal)
PCL Setup Font Number int 0 (def), 0-999
PCL Setup Font Pitch real 10.00 (def), 0.44-999.99
PCL Setup Points (Font Size) real 12.00 (def), 4.0-999.75
PCL Setup Symbol Set String (select) ASCII (def), ROMAN_8,

ECMA_94L1, PC_8, DN,
PC_850, ISO_SWED_NAMES,
ISO_NORWEGIAN, LEGAL,
VENTURA_INTNTL,
VENTURA_USA, DESKTOP,
WINDOWS_L1, PS_TEXT,
ISO_ITALIAN, ISO_FRENCH,
MATH_8, PS_MATH,
PI_FONT, PC_852,
WINDOWS_L2,
VENTURA_MATH,
WINDOWS31_L1,
ISO_LATIN2, ISO_LATIN5,
MICROSOFT_PUB,
PC_TURK, WIN_LATIN5,
ISO_UK, ISO_GERMAN
(ASCII)

Table 5: Printer Setup data types and (default/range) values.

The objects identified in Tables 2-4 represent three data object groups: (1) Server, (2)
Network, and (3) Printer. Table records colored cyan have been removed from the design
specification without explanation. Cells colored in green represent business logic that must
be implemented using Type III rules. Table records colored orange have unspecified data
types or values in the specification.

An XML Schema has been created to represent these object values for parsing. The
entire current schema will be presented over the coarse of Figures 40-54. The overall
(Setup) schema is shown in Figure 42:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 58 -

Figure 42: XML Schema setup-specific data.

As can be seen, the Setup application (in schema, at 1) is a sequence (symbol shown at
2) of the three aforementioned Server (at 3), Network (at 4), and Printer (at 5)
components, each of which is required. In XML Schema, the items in a sequence must
appear in the order of the schema, so the Server component would always appear first,
etc. The ServerType component is further fleshed out to its terminal components in Figure
43:

Figure 43: XML Schema setup ServerType component.

1 2

4

5

3
1 2

3

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 59 -

The ServerType component (at 1) is an XMLTalk ValueHolder component (at 2)
comprising of 10 objects (at 3) that make up the content of the Server Setup interface. The
associated data types, default values, and ranges are embedded in the schema.

The ValueHolder, BufferedAspectAdapter, and SelectionInList components are shown in
Figure 44:

Figure 44: XML Schema for ValueHolder, BufferedAspectAdapter, and SelectionInList
components.

These components are used to instantiate XML-based object models. The ValueHolder
(at 1) is a simple object that just a value. The BufferedAspectAdapter is an object that
maps to a key/value pair and can be modified (hence the buffer to hold the intermediate
value, at 2). The SelectionInList component represents the selected item and the list of
values (at 3).

Returning to the setup component, the same type of diagram is shown, for the
NetworkType component, in Figure 45:

Figure 45: XML Schema for setup NetworkType component.

1

2

3

2

3

1

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 60 -

Notice that the Network component is also a ValueHolder component comprised of three
new components: (1) NetworkPort, (2) NetworkProtocol, and (3) NetworkService. The
NetworkPortType component is shown in Figure 46:

Figure 46: XML Schema for the setup NetworkPortType component.

The NetworkPort has a single component, EthernetPort (at 2), which is comprised of a
value, an EthernetEnablement, and an EthernetSpeed components. The Protocol
component is shown in Figure 47:

Figure 47: XML Schema for the setup NetworkProtocolType component.

The NetworkProtocolType component (at 1) is a ValueHolder component comprised of 6
components (at 2) representing the setup information for their respective protocols. The
terminal protocol components are illustrated in Figures 46-49:

1

2

1

2

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 61 -

Figure 48: XML Schema setup network protocol components for appletalk and tcpip.

1

2

5

6

4

3

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 62 -

Figure 49: XML Schema setup network for token ring and TCPIP protocol components.

The TCPIP protocol component consists of 7 terminal fields.

1

2

3

4

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 63 -

Figure 50: XML Schema setup network TCPIP protocol component.

The TCPIP protocol component is comprised of 7 terminal components.

Returning to the NetworkType component, the NetworkServiceType subcomponent is
fleshed out in Figure 51:

1

2

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 64 -

Figure 51: XML Schema setup network Service component.

The NetworkServiceType component (at 1) is a ValueHolder (at 2) comprised of 8
components (at 3) representing the setup information for their respective services. The
terminal components for these services are illustrated in Figures 49-52:

1 2

3

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 65 -

Figure 52: XML Schema setup network service components for lpd and pserver.

1

2

6

7

5

3

4

8

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 66 -

Figure 53: XML Schema setup network bindery service component.

1

2

3

4

5

6

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 67 -

Figure 54: XML Schema setup network windows service component terminals.

There are eight windows service component terminals.

1

2

3

4

5

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 68 -

Figure 55: XML Schema setup network service web, IPP, SNMP, and Port9100
components.

The final setup-related component is the PrinterType component, as shown in Figure 56:

1

2

3

4

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 69 -

Figure 56: XML Schema for setup PrinterType component

The PrinterType component (at 1) is a ValueHolder component (at 2) that consists of five
subcomponents (at 3), three of which enable the type of queue (print, direct, or hold). The
PostScript component is fleshed out in Figure 57:

1 2

4

5

3

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 70 -

Figure 57: XML Schema for PostScript Printer setup component terminals.

There are 8 terminals specific to the PostScript printer setup. The PCL component
terminals are shown in Figure 58:

1

2

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 71 -

Figure 58: XML Schema for PCL Printer setup component terminals.

There are 9 terminals specific to the PCL printer (at 2) setup, shown at 3.

1

2

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 72 -

Validation Process

Data type, value, and range is processed at two times during the existence of the
ToolShed interface: (1) during initialization, and (2) when server requests are made. The
processing mechanism for the former mode is identical to the one for object existence
validation:

§ Store the data type/value key in the XML file with the real data

§ Iterate through the object models

§ Retrieve the ValueHolder for the model

§ Test the data type against that expected

§ Test the value against that expected

§ Set data validation to true/false

When actions are performed in the interface that require data requests or updates, a new
data/value validation must be performed. The processing mechanism for this mode is
similar to the one for initial data validation:

§ Iterate through the data fields on the submitted form

§ Retrieve the associated Java objects

§ Test the data type against that expected

§ Test the value against that expected

§ Set data validation to true/false

§ Associate a dialog string for invalid data

§ After user provides a data value, run check as above

The processing mechanism is similar, as mentioned, to the object validation mechanism,
but the tests are different. Also, because errors can be made that shouldn’t be sent back
to the server, dialog functionality is also required.

Constraint Representation and Validation (should be level 4 heading)

In reality, data, like user interfaces, does not exist in a vacuum but, rather, along with other
components. That is, there are bound to be dependencies on the data presented in one UI
component or page and others. When a user types an IP address into a text field, not only
must that IP address be a valid string, and lie within a particular range (xxx.yyy.zzz.www),
it may also have to be on a particular subnet. Just as importantly, if a fixed IP address is
selected in one portion of the page, other values may have to change on that page or
others. For example, if we choose to use Auto IP detection, then we won’t need to ask the
user to set the DNS server address, since it would be inappropriate. In a user interface
where the user can type in the DNS server address, and did so, a conflict would arise.

Inter-object dependencies must be validated, or satisfied, in the same way as object
validation or type/value validation. The difference is that there is now a context, and the
previous object values that could be evaluated on their own merit can no longer be

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 73 -

evaluated in the same way. What is required is a constraint validation mechanism and a
set of rules for validating constraints when new and conflicting data is identified.

In some cases, constraints can be satisfied by disabling UI components, but components
which are text fields would be problematic to constrain in such a way, so an alternate
constraint validation mechanism is indicated. This may be referred to as Type 3 validation.

Constraint Representation with RuleML

One mechanism being developed to address this issue is the Rule Markup Language (or
RuleML). This is an XML-based language for representing semantic constraints of
arbitrary complexity. Using a language such as RuleML, inter-object constraints can be
defined in a constraints file, parsed into rules during application initialization, and then the
rules can be cycled through as a event-handling mechanism to validate the constraints
prior to rendering a new page or, more importantly, submitting a server request. Cycling
through the rules requires a rule engine such as Jess (or Mandarax) and a means to
translate the XML-based RuleML rules into the format required by the rule engine. The
RuleML structure will be presented first, followed by the translation into a Java-based rule
syntax and then the processing mechanism whereby rules are applied at runtime.

RuleML Structure and Capabilities

The general structure of RuleML (version 0.8) is shown in Figure 59:

Figure 59: RuleML rulebase XML Schema structure.

A rulebase is a collection of rules which are cycled through and examined. The rulebase
element (at 1) is defined as an (unbounded) collection of implications (imp, at 2), and facts

1

2

4

5

3

6

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 74 -

(at 3). An implication is defined as a head (at 4) and a body (at 5), where the head defines
a test condition and a body defines a conclusion to be made (or an action to be
performed) if the condition is true. As can be seen in the figure, both head and body are
decomposed into conjunctive terms and atoms, which are themselves shown in Figure 60:

Figure 60: RuleML and and atom schema definitions.

This definition states that a conjunction (at 1) is a sequence of (possibly) many atoms (at
2), and that an atom can be an operator (at 3), (possibly) followed by an identifier (at 4) or
variable (at 5), or an identifier or variable followed by an operator. The 0..oo notation
means an unbounded number of items, and the switch notation (at 6) denotes a choice
between the items the follow it. Dotted lines are placed (e.g., at 2) are placed around any
element that can have 0 elements. The definition supports the representation of infix or
postfix notations.

RuleML Representation

An example showing how RuleML is used to represent constraints, for a single rule, is
illustrated in Figure 61:

4

3

1
2

5 6

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 75 -

<Rulebase ID="sweetjessRuleBase">
 <direction>bidirectional</direction>
 <imp>
 <Imp about="#imp1"/>
 </imp>
 <fact>
 <Fact about="#fact1"/>
 </fact>
</Rulebase>

<Imp ID="imp1">
 <_head>
 <_Head about="#head1"/>
 </_head>
 <_body>
 <_Body about="#body1"/>
 </_body>
</Imp>

<_Head ID="head1">
 <atom>
 <Atom about="#atom1"/>
 </atom>
</_Head>

<Atom ID="atom1">
 <_opr>
 <_Opr about="#opr1"/>
 </_opr>
 <ind>
 <Ind about="#ind1"/>
 </ind>
 <var>
 <Var about="#var1"/>
 </var>
</Atom>

<_Opr ID="opr1">
 <rel>
 <Rel about="#rel1"/>
 </rel>
</_Opr>

<Rel ID="rel1">
 <value>giveDiscount</value>
</Rel>

<Ind ID="ind1">
 <value>percent10</value>
 <position>2</position>
</Ind>

<Var ID="var1">
 <value>customer</value>
 <position>1</position>
</Var>

<_Body ID="body1">
 <atom>
 <Atom about="#atom2"/>
 </atom>
</_Body>

<Atom ID="atom2">
 <_opr>
 <_Opr about="#opr2"/>
 </_opr>
 <var>
 <Var about="#var2"/>
 </var>
</Atom>

<_Opr ID="opr2">
 <rel>
 <Rel about="#rel2"/>
 </rel>
</_Opr>

<Rel ID="rel2">
 <value>premium</value>
</Rel>

<Var ID="var2">
 <value>customer</value>
 <position>1</position>
</Var>

<Fact ID="fact1">
 <_head>
 <_Head
about="#head2"/>
 </_head>
</Fact>

<_Head ID="head2">
 <atom>
 <Atom about="#atom3"/>
 </atom>
</_Head>

<Atom ID="atom3">
 <_opr>
 <_Opr about="#opr3"/>
 </_opr>
 <ind>
 <Ind about="#ind2"/>
 </ind>
</Atom>

<Ind ID="ind2">
 <value>Allan</value>
 <position>1</position>
</Ind>

<_Opr ID="opr3">
 <rel>
 <Rel about="#rel3"/>
 </rel>
</_Opr>

<Rel ID="rel3">
 <value>premium</value>
</Rel>

Figure 61: A rule/constraint represented with RuleML.

The namespace references have been removed from the preceding figure to collapse the
size a bit. This is a pretty obscure way of looking at the rule. The DOM tree this rule
represents is illustrated below in Figure 62:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 76 -

Figure 62: Tree representation of sample rule.

RuleML Parsing to Java Rules

RuleML forms cannot be processed directly, so they must first be parsed into Java so that
the Java-based rule engine can interpret them. Since the rules do not change with time
and can be loaded at launch time, and since ToolShed doesn’t have a large number of
business rules to begin with, this extra processing shouldn’t force a noticeable
performance loss. Mandarax parses directly from RuleML into its knowledge base of rules.
The parsing model for RuleML in Mandarax is shown in

Figure 63: Mandarax RuleML parsing model.

Rule-Based Processing

Once rules have been parsed from RuleML or some suitable format into the rule engine’s
knowledge base, the rules can be processed. The Mandarax project utilizes a backward-
chaining (BC) algorithm to perform its analysis because it is a deductive model. That is, it
is trying to prove that a conclusion is correct, and BC is a good approach for that. A
forward-chaining (FC) algorithm, which is also deductive, can also be used to identify rule
conflicts. As this is the primary intent of rule-based processing in ToolShed (i.e., constraint
validation as opposed to predictive modeling), a forward-chaining algorithm is more

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 77 -

appropriate in ToolShed. In both approaches, rules are represented with the same
condition/action pairs but the way conflict sets are constructed and analyzed differs.

In the FC approach, the algorithm starts from a set of known facts, and matches those to
the condition parts of available rules. Those rules that satisfy the current knowledge/fact
base are collected, sorted, and executed in order, leading to predictions.

Constraint Validation

In ToolShed, what is sought is a situation where the set of rules that describe a condition
are violated by the current/available user-supplied information. The available information is
comprised of the values in the various Java models associated with the page contents.
That is, the combined set of conditions should evaluate to true but doesn’t. In this respect,
the complexity of rule-based processing is really not needed in ToolShed, because a
predictive model isn’t currently part of the design requirements. A predictive model could
be employed, e.g. to fill in values on one page once values on another page are selected,
but that is a separate matter for discussion.

Once violated rules are identified (i.e., a special form of exception), associated with them
should be a (localized) display string that can be rendered in a dialog.

Server Communications

ToolShed Fiery-based applications communicate to the server using SOAP. There is a
client side layer and two layers on the serverside: a SOAP layer and a data translation
layer. The SOAP server provides maximum transparency to applications by providing a
consistent data and method API. The data translation layer interacts with a number of
Harmony APIs (e.g., ATTR, SYSDICT, SCAN). This approach provides the most stable,
supported, and compatible communications mechanism but also provides transparency
for other applications that might want to communicate with the server. The overall
architecture is shown in Figure 64:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 78 -

Figure 64: ToolShed communications architecture.

The figure above illustrates the communications flow between the Java SOAP client side
(items 1 and 2) and the C++ SOAP server and data translation layer (items 3-6). The
retrieval and assignment of values in UI pages is handled by SOAP client object classes
(in this case implemented in Java, at 1). Each class represents the semantic content of a
page and implements both a getObject() and setObject() method. In the figure above this
is illustrated with the ServerGeneral object (at 1). The getObject method invokes the call()
SOAP method using a data transfer object or DTO. In the figure above this is represented
for ServerGeneral by ServerGeneralDTO (at 2).

The DTO class is a data-only object class. The DTO has a paired class on the SOAP
server. These two classes must match in number, type, and order or the serialization
across HTTP cannot work properly2. The SOAP server object class for ServerGeneral is
ServerSetup.cpp. The method paired to getObject is ns1__getServerGeneral. There are
commensurate SOAP server classes paired for each SOAP client class (at 3). It is the
SOAP server class that constructs the intermediate object that the data translation layer
uses (at 4) and returns field mask values and return objects based on the success of the
call.

The data translation layer performs two duties. First it interacts directly with Harmony APIs
which are key/value based, thus providing a direct way to test the Harmony API. Second,
it aggregates the key/value pairs into the semantic objects used by the SOAP server to
interact with the SOAP client objects. An example is illustrated by
DTL_getServerGeneral() in CFG_ServerSetup.cpp (at 4). This method is called by the

2 This is an artifact of gSOAP. In Axis this isn’t necessary because a mapping between object types and methods
for client/server components would be made explicit in the deployment descriptor.

4 3
1

2

5

6

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 79 -

SOAP server ns1__getServerGeneral() method and returns an error code and an object if
successful. Inside it makes individual calls to the data translations layer for specific keys
and aggregates key-based errors into a fields mask that represents all of the errors for this
call.

An individual call to the data translation layer will require opening or accessing a session
object for ore or more Harmony APIs and then making one or more calls, such as
GetValue or SetValue along with the associated keys (at 6). The key names are mapped
between data translation layer keys and Harmony keys (at 5) so that the data translation
layer can remain transparent to the Fiery server naming conventions while remaining
synchronized to the names themselves.

ASIDE: What is SOAP, and Why Use It?

SOAP is a combination of XML representation and a network communications protocol.
That is, RPC capability with XML encoding. The most popular communications protocol
used for SOAP is HTTP, but it can use any networking protocol. With respect to
presentation tiers, SOAP replaces the need for a server to support a client interface,
because it enables a different server (or client) to make secure method calls on its data
objects. As a result, communications is limited to data transfer, which limits the size of the
pipe that has to be opened up between the client and server. The client can also then
generate whatever interface it chooses.

The transport protocols used for communications can be Java Remote Method Invocation
(RMI), Microsoft Distributed Component Object Model (DCOM), and SOAP/XML. RMI and
DCOM are more tightly coupled than SOAP/XML and generally provide faster information
translation because they transfer binary data as opposed to formatted text. If very tight
coupling between applications isn’t required, SOAP/XML has many advantages over
either RMI or DCOM:

§ Simplicity: SOAP/XML utilizes simple text to describe the transfer of data, so it
may be easily understood.

§ Platform Agnostic: SOAP/XML uses simple text, so any platform that supports
the underlying protocol to SOAP/XML may send or receive XML messages. This
includes 8-bit and 16-bit embedded systems.

§ Protocol Support: SOAP/XML is most commonly run over HyperText Transfer
Protocol (HTTP). This allows it to more effectively pass through firewalls. It can,
however, be run over TCP, FTP and a variety of other protocols.

§ Language Independent: SOAP/XML is text-based, and therefore generally any
language supporting text manipulation may be used to support SOAP/XML.

§ Integration with PC and Enterprise Systems: Most PC and Enterprise systems
today are capable of communication using SOAP/XML. For this reason, device
integration with these systems is quite feasible using SOAP/XML.

SOAP, being implemented using XML and XML Schema, is architecture, operating
system, and language independent. The SOAP server mediates communications
between servers by translating the requesting server XML method call into whatever
procedural call is defined to satisfy that interface on the requested server side, as shown in
Figure 65:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 80 -

Figure 65: SOAP architecture for HTTP networking/rpc protocol.

The request and response are both mediated, in the ToolShed case, by HTTP. All SOAP
toolkits provide a proxy component that parses and interprets the SOAP message to
invoke application code. The proxy understands encoding styles, translation of native data
types to/from XML, etc. The proxy performs the following three tasks:

§ Deserialize the message from XML into some native format suitable for passing
off to the code.

§ Invoke the code.

§ Serialize the response back into XML and hand back to the transport listener for
delivery back to the requestor or forwarding to the next client.

The translation interface, i.e., the component that tells the proxy which code to invoke, is
called (for Apache SOAP) a Deployment Descriptor and can be implemented with the
Web Services Description Language (WSDL) to enable dynamic discovery of the Web
Services capabilities and to ease/organize maintenance of the capabilities. The
networking layers associated with SOAP are depicted in Figure 66:

Figure 66: Networking components associated with SOAP.

4

3

1

2

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 81 -

Assuming that universal discovery isn’t important (i.e., the schemas are used only by EFI),
the first 4 layers of Figure 57 are what will be used in ToolShed. HTTP/HTTPS (at 1)
provides the transport protocol, SOAP provides for message parsing and creation (at 2),
XML provides for the information representation and content (at 3), and WSDL provides
the language definition and translation template (at 4).

SOAP in ToolShed

An illustrative example of SOAP usage in ToolShed is the sequence associated with
WebSetup => Network => Protocol => TCP/IP Ethernet data. There are 3 components
that must be implemented in the ToolShed communications path between the toolkit and
the server data: (1) server side code representing the C++ classes constructed from the
server data, (2) the deployment descriptor which maps from the server side code to the
client-side model, and (3) the ToolShed client code associated with component events.

gSOAP Server-Side Implementation

ToolShed will have its own SOAP server, which will be architected as shown in Figure 67:

CLIENT

SERVER

T
O
O
L
K
I
T

S
O
A
P

C
L
I
E
N
T

S
O
A
P

S
E
R
V
E
R

T
R
A
N
S
L
A
T
I
O
N

H
A
R
M
O
N
Y

F
I
E
R
Y

S
E
R
V
E
R

deployment descriptor

HTTP

Figure 67: ToolShed SOAP server architecture.

The server side Java for this example is shown in Figure 68:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 82 -

int setup__getAvailableSpeeds(struct soap *soap, void *in,
 ArrayOfSpeeds *out)
{
 out->__ptr = (char**) soap_malloc(soap, 2);
 out->__size = 2;
 out->__ptr[0] = (char*) soap_malloc(soap, 1024);

 strcpy(out->__ptr[0], "this");
 out->__ptr[1] = (char*) soap_malloc(soap, 1024);
 strcpy(out->__ptr[1], "that");
 return(SOAP_OK);
}

Figure 68: Server side C++ for hello world SOAP example.

All that we provide is the normal interface in terms of the method class and name (at 1).

SOAP Deployment Descriptor

The SOAP server will encode the parameters for parsing, and the Deployment Descriptor
provides the mapping, as shown in Figure 69:

1

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 83 -

 <?xml version="1.0" encoding="UTF-8"?>
<definitions name="setup"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:SOAP="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:WSDL="http://schemas.xmlsoap.org/wsdl/"
 targetNamespace="http://localhost/soap/setup.wsdl"
 xmlns:tns="http://localhost/soap/setup.wsdl"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:setup="urn:setup">

 <types>
 <schema targetNamespace="urn:setup"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:setup="urn:setup"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">

 <complexType name="empty">
 <sequence>
 </sequence>
 </complexType>
 <complexType name="ArrayOfstring">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <sequence>
 <element name="item" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute ref="SOAP-ENC:arrayType" WSDL:arrayType="xsd:string[]"/>
 </restriction>
 </complexContent>
 </complexType>
 </schema>
 </types>
 <service name="setup">
 <documentation>Setup Service</documentation>
 <port name="setup" binding="tns:setupBinding">
 <SOAP:address location="http://localhost/soap"/>
 </port>
 </service>
 <* TYPE DEFINITIONS HERE /*>
</definitions>

Figure 69: Server side Deployment Descriptor (WSDL) for TCP/IP Ethernet speeds
component, header components.

As can be seen, the DeploymentDescriptor identifies a name (“setup”) for the definitions
and the service (at 1 and 6, respectively). It also defines the urn (“urn:setup”) for the
schema namespace and the namespace reference (at 3 and 4). A complex type is also
defined for returning an array of strings (at 5). The missing component is the type and
operation mappings, which is shown in

3

2

1

4

5

6

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 84 -

 <?xml version="1.0" encoding="UTF-8"?>
<definitions name="setup"
 <message name="getAvailableSpeedsRequest"></message>
 <message name="getAvailableSpeedsResponse">
 <part name="out" type="setup:ArrayOfstring"/>
 </message>
 <portType name="setupPortType">
 <operation name="getAvailableSpeeds">
 <documentation>Service definition of function setup__getAvailableSpeeds
 </documentation>
 <input message="tns:getAvailableSpeedsRequest"/>
 <output message="tns:getAvailableSpeedsResponse"/>
 </operation>
 </portType>
 <binding name="setupBinding" type="tns:setupPortType">
 <SOAP:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getAvailableSpeeds">
 <SOAP:operation soapAction=""/>
 <input>
 <SOAP:body use="encoded" namespace="urn:setup"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <SOAP:body use="encoded" namespace="urn:setup"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 </binding>
</definitions>

Figure 70: Remaining WSDL definition for Ethernet available speeds components.

This figure concludes the previous figure in providing the server-side data type mapping
and operation mapping within the WSDL file. The “definitions” tag has been provided for
continuity to the previous figure only. The message definitions (at 1) define allowable
message. The portType operation (“getAvailableSpeeds” refers to the input and output
operations name from the tns namespace (at 2, 3). The binding operation
“getAvailableSpeeds” (at 4) defines the input and output urns and encodings.

SOAP Client

Finally, on the client side we have code that communicates with the server to retrieve the
requested data, shown in Figure 71:

3

2

1

4

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 85 -

 public class TCPIPEnetSpeedsClient
{
 public static void main (String[] args) throws Exception
 {
 URL url = new URL("http://localhost:1100");
 Call call = new Call();

 call.setTargetObjectURI(“urn:Setup”);
 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC;);

 System.out.println(“The SOAP server says: “);

 try
 {
 call.setMethodName("getAvailableSpeeds");
 Response resp = call.invoke(url, "");

 if (resp.generatedFault())
 {
 Fault fault = resp.getFault();
 System.out.println("Fault code = "+ fault.getFaultCode());
 System.out.println("Fault string = "+ fault.getFaultString());
 }
 else
 {
 Parameter ret = resp.getReturnValue();
 Object value = ret.getValue();

 System.out.println(value);
 String[] speeds = (String[]) value;

 for (int i = 0; i < speeds.length; i++)
 System.out.println(speeds[i]);
 }
 }
 catch (SOAPException e)
 {
 e.printStackTrace();
 }
 }
}

Figure 71: SOAP client for server TCP/IP Ethernet speeds access.

As can be seen, this particular example is implemented as a Java class. The Url is canned
to use the localhost server and port 1100 (at 1). In a live ToolShed, these would be
provided at the command line, through the initiating url parameter list, or as applet
parameters. A Call object is also created here. The target urn and encoding style are then
defined and associated with the call (at 2). The method to call on the server side is then
associated with the call prior to invoking the call on the server (at 3). Finally, the result,
assuming there is one, is retrieved and associated with a local value (at 4). This example
corresponds closely to the model that would be used to handle server data access in
ToolShed.

In the ToolShed context, SOAP can thus act as a single point of communication for the
various server-side data sources. A request is made for information, and the client need
not know whether that information is being served from SNMP, Harmony, or Dictionary (or
some other source). All that is required is a method name and class name.

SOAP Requirements in ToolShed

SOAP with HTTP has four requirements: (1) server side SOAP service, (2) SOAP client
support, (3) a deployment descriptor, and (4) language support to perform the requested
operations on client and server side. The soap.jar file is required of any client that would

3

2

1

4

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 86 -

make use of the SOAP service on the server, to provide access to SOAP-specific classes
and methods. As previously mentioned, the SOAP server must have defined locally, or
remotely using WSDL, a deployment descriptor file. This file provides all of the
management and interface information needed to support the translation from XML to
native language requests and back again. If WSDL is used, it can be hosted from another
server and not post any additional storage requirements on the server. Finally, there must
be language support for the method calls themselves. The SOAP client will be using Java,
so a JVM must be resident on the server if the client is hosted from the server. The SOAP
server is using C/C++, so the associated classes must exist on the server side and have
an entry point. Since the Harmony APIs are being used to acquire the server data, the
SOAP server C++ classes must interact with the Harmony API.

Client Applications/ToolShed team will create the WSDL file for the server side, but will
work closely with the server engineering team to define the WSDL. This work has been
initiated. The ToolShed team is trying to resolve footprint problems relating the embedded
SOAP server requirement using the gSOAP server. In order to use gSOAP with
ToolShed, the client and server XML must be the same. Thus a common WSDL must be
used and that WSDL must be used to create the .jar file for the ToolShed client. This work
is ongoing.

Localization and Internationalization

Currently WebTools localization strings are partly implemented on the server and partly on
the client. This is due to the fact that C cannot (currently) represent Unicode double-byte
character formats. Thus strings that must work on the hardware, or C-only platforms, are
maintained on the server, and the remaining strings are maintained on the client. Due to
this particular problem, it is not possible, as long as the server-side implementations are
required, or as long as C doesn’t have full Unicode support, to have all of the strings
hosted by the server or the client.

The bulk of internationalization rests with the structure of certain strings, such as dates
and times, and symbols (such as units symbols), which aren’t themselves the string
content. Both of these problems must be addressed by the ToolShed approach.

General Localization Approach

The approach being used for ToolShed is to design and implement a new Localization
Server (LS, see Localization Server), implemented using the ToolShed architecture, that
can be polled for the localizations at build time. The resulting strings are saved to resource
files and incorporated into the interface at runtime.

String Acquisition

At build time, strings are acquired from the Localization Server using the SOAP service.
The process is illustrated in Figure 72:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 87 -

Initialize resource files for each EFIGSBPJDC language
Parse UI XML file
 Iterate through elements
 If element is a textual component
 Iterate through EFIGSBPJDC
 Make a SOAP call to LS with value as key

 If a value is returned for language
 Write a key/value line into resource file
Terminate resource files for each EFIGSBPJDC language

Figure 72: Pseudocode for parsing localization files.

There are two components of this process that warrant discussion: (1) the parsing
component, and (2) the SOAP call. The actual file construction will be straightforward, in
that a preamble will be written, the key/value content, and then a postamble. The parsing,
which is performed at build time, makes use of a LocalizationBuilder class, similar to
JUIBuilder. The difference is that instead of creating Swing components it writes the
strings to files. The method used is called initializeLocalizations() and is called from
initialize().

String Translation

There are two classes associated directly with localization translation in ToolShed: (1)
ResourceManager, and (2) ToolShedResource. The former is an abstract class and the
latter extends it. The primary purpose of the resource manager is to select a resource
based on the selected locale, and then to translate from the string key to the localized
string value. The resources themselves are in files named: ToolShedString_lang_spec,
where “lang” is a locale such as “en” and “spec” is a specialization such as “us”. These
files are produced at build time.

In the JUIBuilder class, there is an initializeUI method that takes a Node and handles it. In
the case of components, which account for all localization strings, the call sequence is
shown in Figure 73:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 88 -

initializeUI(Node)
 initializeView(Node)
 initializeComponent(Node)
 initializeLabel(Node)

JUIBuilder:

 ToolShedResource mToolShedResource;

initializeLabel:

 JLabel label = new JLabel();
 NamedNodeMap nnp = node.getAttributes();
 Node nd = nnp.getNamedItem("text");

 mToolShedResource = (ToolShedResource) ToolShedResource.getInstance();

 if (nd != null)
 label.setText(mToolShedResource.getString(nd.getNodeValue().trim()));

 nd = nnp.getNamedItem("name");

 if (nd != null)
 label.setName(mToolShedResource.getString(nd.getNodeValue().trim()));

Figure 73: String localization construction in ToolShed.

The initializeView() method (at 1) is responsible for parsing the UI content and calls the
initializeComponent() method (at 2) which parses the specific components. The example
provided above illustrates the parses the content for a label and constructs the Java Jlabel
component. In this case, the base JUIBuilder class instantiates the ToolShedResource
object (a singleton). The individual components access this object and set their string
components to the localized versions based on the search key (the nominal English
value). When the component is rendered, the localized value is displayed.

method invocation order

method content

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 89 -

Design Requirements

This section is intended to give describe the ToolShed project design model. There are
four components to the design:

§ Use cases

§ User interface elements

§ Page flows (storyboards)

§ Object model

This section hasn’t really been fleshed out yet, but will include elements from the
requirements document.

Use Cases

These talk about the use cases for each tool that is specified and the primary and major
secondary scenarios fore each use case. First the actors for the project are defined, and
then the use cases themselves.

Actors

There are eleven possible actors identified by the use cases for the ToolShed model:

§ USER: Configuring/viewing the fiery server

§ CRIMSON: The Crimson XML parser

§ TSAPPLET: The UI Applet

§ TSAPP: The desktop application

§ CWS: Command Work Station

§ SOAP: Soap (in whatever form, such as gSoap, Apache, Axis)

§ HARM: Harmony

§ SNMP: Simple Network Management Protocol

§ DICT: Dictionary

§ STRINGS: The Strings server

§ SERVER: The fiery server

User-Driven Use Cases

Use cases for Setup fall into three general functional categories with respect to Fiery
Server support, as defined in Fiery System 5.5 Server Product Specification, Remote
Setup, pages 39-61:

§ Server Setup

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 90 -

§ Network Setup

§ Printer Setup

In addition, ToolShed introduces new use cases to support configuration of the interface.
Fiery Server support ‘use cases’, presented as client requirements, for the Server Setup,
are presented in Table 6:

UI Tab Option Widget Type Default Value
Server Setup Server Name JTextField
Server Setup Date JTextField (3)
Server Setup Time JTextField (2)
Server Setup Enable Printed Queue JCheckbox Selected
Server Setup Jobs Saved in Printed Queue JTextField 10
Server Setup Preview While Processing JCheckbox Not selected
Server Setup Use Character Set JComboBox Macintosh

Windows (selected)
DOS

Server Setup Print Start Page JCheckbox Not selected
Server Setup Enable Printing Groups JCheckbox Not selected
Server Setup Clear Each Scan Job JComboBox Delete All Scan Jobs

1 day after scan (selected)
1 week after scan
Manual

Server Setup Clear Each Scan Job Now JCheckbox Not selected
Server Setup Administrator JTextField
Server Setup Operator JTextField
Server Setup Auto Print Job Every 55 Jobs JCheckbox Not selected
Server Setup Auto Clear Job Every 55 Jobs JCheckbox Not selected
Server Setup Job Log Page Size JComboBox Tabloid/A3

Letter/A4
Server Setup Fiery Contact Name JTextField
Server Setup Fiery Contact Phone JTextField
Server Setup Fiery Contact E-mail JTextField
Server Setup Device Contact Name JTextField
Server Setup Device Contact Phone JTextField
Server Setup Device Contact E-mail JTextField

Table 6: Server support, Server Setup tab use cases.

Records colored in cyan were missing from the Fiery Product Specification, dated
04/16/2003. Fiery Server Support use cases for Network Setup are presented in Table 7:

UI Tab Option Data Type Data Value/Range
Network Setup Enable Ethernet JCheckbox Selected
Network Setup Ethernet Speed JComboBox Auto Detect (selected)

1 Gbps
100 Mbps Full Duplex
100 Mbps Half Duplex
10 Mbps Full Duplex
10 Mbps Half Duplex

Network Setup Enable Apple Talk JCheckbox Selected
Network Setup Apple Talk Zone JComboBox Only enabled when the

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 91 -

Enable Apple Talk is selected
Network Setup Enable TCP/IP for Ethernet JCheckbox Selected
Network Setup Enable AutoIP for Ethernet JCheckbox Selected, only enabled when

Enable Ethernet is selected
Network Setup Select Protocol JComboBox DHCP (selected)

BOOTP
Only enabled when Enable
Ethernet is selected

Network Setup IP Address JTextField (4) 127.0.0.1 (def), network
defined Fiery address, user
editable, only enabled when
the Enable Ethernet is
selected and when the AutoIP
is not selected. Each value is
0-255.

Network Setup Subnet Mask JTextField (4) 255.255.255.0 (def), enabled
only when Enable Ethernet is
selected and when AutoIP is
not selected. Each value is 0-
255

Network Setup Enable Gateway Automatically JCheckbox Selected
Network Setup Gateway Address JTextField 127.0.0.1 (def)
Network Setup Enable TCP/IP for Token Ring JCheckbox Selected
Network Setup Enable DNS JCheckbox Selected
Network Setup Get DNS Address

Automatically
JCheckbox Selected, only enabled if

AutoIP configuration is
selected

Network Setup Primary DNS Server IP
Address

JTextField 127.0.0.1 (def), only enabled
if AutoIP Configuration is
selected

Network Setup Secondary DNS Server IP
Address

JTextField 127.0.0.1 (def), on enabled if
AutoIP Configuration is
selected

Network Setup Domain Name JTextField Only enabled if AutoIP
Configuration is selected

Network Setup Use DNS on JComboBox Any (selected)
Ethernet
Token Ring
Only enabled if AutoIP
Configuration is ‘true’, token
ring is installed on the Fiery

Network Setup Host Name JTextField Only enabled if AutoIP
Configuration is not selected

Network Setup Configure IP Ports JCheckbox Not selected
Network Setup Enabled IP Ports JComboBox 80 (HTTP)

137-139 (NETBIOS)
161-162, (SNMP)
515 (LPD)
631 (IPP)
9100-9103 (9100)
EFI Ports

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 92 -

All (by default) are selected,
any deselected also disable
the associated service

Network Setup Enable IPX Auto Frame Type JCheckbox Not selected
Network Setup Select Frame Types JComboBox Ethernet 802.2

Ethernet 802.3
Ethernet II
Ethernet SNAP
Token Ring
Token Ring SNAP

Network Setup Clear Frame Types JCheckbox Not selected
Network Setup Enable LPD JCheckbox Selected
Network Setup Enable PServer JCheckbox Not selected
Network Setup NetWare Server PServer Poll

Interval in Seconds
JTextField 15

Network Setup Enable NDS JCheckbox Not selected
Network Setup Select NDS Tree String (select) Network defined
Network Setup Delete Bindery setup and

continue
JCheckbox Not selected

Network Setup Is user login needed to browse
NDS tree?

JCheckbox Not selected

Network Setup NDS Tree Name JTextField Network defined
Network Setup Current path JTextField Network defined
Network Setup Enter Password JTextField
Network Setup Current path JTextField Network defined
Network Setup Enter Your Print Server

Password
JTextField

Network Setup Server should look for print
queues in

JTextField Entire NDS tree (def), network
defined

Network Setup NDS Tree Name JTextField Network defined
Network Setup Current path JTextField Network defined
Network Setup Choose File Server JTextField
Network Setup Supported Servers JTextField
Network Setup Remove support for JTextField
Network Setup Select File Server JTextField
Network Setup Enter First Letters of Server

Name
JTextField A

Network Setup Add Server JTextField AAAAA
Network Setup Add Server JTextField Server1
Network Setup File Server Login JTextField
Network Setup Enter Your Login Name JTextField guest
Network Setup Enter Your File Server

Password
JTextField

Network Setup NetWare Print Server JTextField
Network Setup Enter Your Print Server

Password
JTextField

Network Setup Enable Windows Printing JCheckbox Selected
Network Setup Use WINS Name Server JCheckbox Not selected,

enabled when Enable
Windows Printing is selected,
and when Auto IP is selected

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 93 -

Network Setup WINS IP Address JtextField (4) 127.0.0.1 (def), enabled only
if Use WINS Name Server is
selected

Network Setup Server Name JTextField Enabled when Enable
Windows Printing is selected,
15 chars max

Network Setup Server Comments JTextField Enabled when Enable
Windows is selected, 15
chars max

Network Setup Set Domain Name JTextField Select from List (def)
Enter Manually
Enabled when Enable
Windows Printing is ‘true’, 15
chars max

Network Setup Workgroup or Domain JTextField
Network Setup Choose Domain JTextField
Network Setup Set Driver Type JComboBox PS (selected)

PCL
Only available if Windows
Printing is supported, is
selected

Network Setup Enable Web Services JCheckbox Not selected
Network Setup Enable IPP JCheckbox Selected
Network Setup Enable SNMP JCheckbox Selected
Network Setup Specify Read Community

Name
JComboBox Public (selected)

Network Setup Specify Write Community

Name
JComboBox Public (selected)

User defined
Network Setup Enable Port 9100 JCheckbox Selected
Network Setup Enable Parallel Port JCheckbox Selected
Network Setup Ignore EOF Character JCheckbox Not selected
Network Setup Parallel Port Timeout (seconds) JTextField 5
Network Setup Enable on Ethernet JCheckbox Selected
Network Setup Auto Select/Manual Select JCheckbox Not selected
Network Setup Select Frames JCheckbox Not selected, enabled when

Manual Select is selected
Network Setup Bindery Setup JCheckbox Not selected,

enabled when Enable
PServer is selected

Network Setup Change Trees JCheckbox Not selected,
enabled when Enable NDS is
selected

Network Setup Enable LPD Printing Service JCheckbox Selected
Network Setup Enable FTP Services JCheckbox Selected

Table 7: Server support, Network Setup tab use cases.

Records colored in orange lack sufficient information in the Fiery Product Specification,
dated 04/16/2003, to determine their widget type or range of values. Records colored in
cyan were missing from the Fiery Product Specification, dated 04/16/2003. Cells colored
in green embed business logic that must be implemented with Type III validation.

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 94 -

Fiery Server Support use cases for Printer Setup are presented in Table 8:

UI Tab Option Data Type Data Value/Range
Printer Setup Enable Print Queue JCheckbox Selected
Printer Setup Enable Direct Connection JCheckbox Selected
Printer Setup Enable Hold Queue JCheckbox Selected
Printer Setup Default Paper Sizes JComboBox US (selected)

Metric
Printer Setup Convert Paper Sizes JComboBox No

Letter/Tabloid>A4/A3
A4/A3>Leter/Tabloid (selected)

Printer Setup Page Order JComboBox Forward (selected)
Reverse

Printer Setup Default Color Mode JComboBox CMYK (selected)
Grayscale

Printer Setup Print Cover Page JCheckbox Not selected
Printer Setup Allow Courier Substitution JCheckbox Selected
Printer Setup Print to PS Error JCheckbox Not selected
Printer Setup Print Master JCheckbox Not selected
Printer Setup Select Printer JTextField
Printer Setup Printer Type JTextField
Printer Setup Parallel Connection JComboBox Print Queue (selected)

Hold Queue
Direct Connection
Only published queues may be
selected

PCL Setup Paper Size String PPD defined
PCL Setup Orientation JComboBox Portrait (selected)

Landscape
PCL Setup Form Length int 60
PCL Setup Font Source JComboBox Internal (selected)

Softfont (Internal)
PCL Setup Font Number int 0
PCL Setup Font Pitch real 10.00
PCL Setup Points (Font Size) real 12.00
PCL Setup Symbol Set JComboBox ASCII (selected), ROMAN_8,

ECMA_94L1, PC_8, DN,
PC_850, ISO_SWED_NAMES,
ISO_NORWEGIAN, LEGAL,
VENTURA_INTNTL,
VENTURA_USA, DESKTOP,
WINDOWS_L1, PS_TEXT,
ISO_ITALIAN, ISO_FRENCH,
MATH_8, PS_MATH,
PI_FONT, PC_852,
WINDOWS_L2,
VENTURA_MATH,
WINDOWS31_L1,
ISO_LATIN2, ISO_LATIN5,
MICROSOFT_PUB,
PC_TURK, WIN_LATIN5,

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 95 -

ISO_UK, ISO_GERMAN
(ASCII)

Table 8: Server setup Printer Setup tab use cases.

Records colored in orange lack sufficient information in the Fiery Product Specification,
dated 04/16/2003, to determine their widget type or range of values. Records colored in
cyan were missing from the Fiery Product Specification, dated 04/16/2003. Cells colored
in green embed business logic that must be implemented with Type III validation.

ToolShed configuration support use cases are presented in Table 9:

Type Configuration Option
Configuration Select Functionality
Configuration Show/Hide Functionality
Customization Customize Layout
Customization Customize Look and Feel

Table 9: ToolShed configuration support use cases.

USER SelectTSSetup into TS

Precondition: Opening screen is viewable on the USERs browser.

Flow of Events:

Primary Scenario

1) USER selects setup button from application menu of main page

12) TS interacts with SERVER to obtain UI, Data, and Constraint information

13) TS parses, constructs, and renders the main setup page

Postcondition: The setup interface is displayed

User Interface Elements

Functional UI Elements provide details on key screen and user interface components.
The application interface is constructed entirely from Java Swing (Java Foundation Class)
instances. Representative examples of a variety of Swing components (using the Metal
look and feel) are provided in this section. The look and feel as well as the method of
implementation (dialog box, full screen, etc.) will be determined as part of a separate Look
and Feel and usage model design effort. The figures presented below are provided as
illustrations of the capabilities of the Swing component package, and have been taken
directly from the Sun SwingSet demo:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 96 -

 http://java.sun.com/products/plugin/1.2/demos/SwingSet/SwingSetApplet.html

As previously mentioned, the following components are required in the known (from the
most recent UI mockups, dated 2/5/2003) ToolShed-supported applications:

§ TabbedPanel a JTabbedPanel

§ Label a JLabel

§ Button a Jbutton

§ CheckBox a JCheckBox

§ List a JList

§ TypeText a JTextField

§ ComboBox a JComboBox

§ RadioButton a JradioButtonGroup

§ Table a Jtable

§ ScrollText a ?

§ In addition, a few Swing components or necessary and/or may come in handy:

§ JPanel

§ JFrame

§ JScrollBar

§ JSlider

§ JTree

§ JProgressBar

Each of these will be illustrated with a figure from the SwingSet demonstration.

JTabbedPanel

This component is heavily used in WebTools/ToolShed and is somewhat configurable as
can be seen in Figure 74:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 97 -

Figure 74: Swing tabbed panel component, JTabbedPanel.

JLabel Component

Provides standard label functionality, and is shown in Figure 75:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 98 -

Figure 75: Swing label component, JLabel.

JButton Component

Provides standard button functionality, and is shown in Figure 76:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 99 -

Figure 76: Swing button component, JButton.

JCheckbox Component

Provides standard checkbox functionality, and is shown in Figure 77:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 100 -

Figure 77: Swing checkbox component, JCheckbox.

Jlist Component

Provides standard list functionality, and is shown in Figure 78:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 101 -

Figure 78: Swing list component, JList.

JTextField

Provides standard text field functionality, and is shown in Figure 79:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 102 -

Figure 79: Swing textfield component, JTextField.

JComboBox Component

Provides standard combo box functionality, and is shown in Figure 80:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 103 -

Figure 80: Swing combo box component, JComboBox.

JRadioButton Component

Provides standard radio button functionality, and is shown in Figure 81:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 104 -

Figure 81: Swing radio button component, JRadioButton.

JTable Component

Provides standard table functionality, and is shown in Figure 82:

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 105 -

Figure 82: Swing table component, JTable.

§

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 106 -

Implementation and Resource Requirements

The following sections address the suggested technical development strategy for the
ToolShed project, along with an initial look at the resource requirements for the project. It
should be emphasized that at this stage of the project firm estimates will be difficult to
produce, let alone to live up to, especially considering that some of the items being
developed are bleeding edge technology items.

Phased Implementation Plan

The implementation of this project is comprised of three separate stages:

1. Construct initial prototypes. This phase included the following prototypes:

§ initial XMLTalk UI (read only, write, read write) demonstrations, along with
demonstrations of different UI components

§ Demonstration model of WebScan which used a Harmony call and a Java bean
to instantiate the mailbox information.

§ Use of UI constraints.

§ User of Type 1 validation.

§ Use of setup files.

2. Construct remaining functional prototypes. This phase will include the following
prototypes:

§ ToolShed executive prototype.

§ WebSetup prototype with full UI functionality.

§ Development of XML Schema models for UI and Object models.

§ Separation of UI-specific and Object-specific XML files.

§ Type 2 validation prototype.

§ Type 3 validation prototype.

§ SOAP/Communications prototype.

§ End-to-End integration prototype.

§ Localization prototype.

§ Unit tests created.

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 107 -

3. Alpha version of ToolShed. This phase will include the following:

§ All UI components functional.

§ All Object types can be communicated to/from the server with selected
communications mechanism(s).

§ All validation types supported.

§ Localization support functional.

§ Product application prototype.

§ Release/User manuals drafted.

§ Test cases developed.

Resource Allocation Requirements

At the time of printing, noone is working on the ToolShed project full time. No progress can
continue without at least one fulltime software engineer working on the project. The Phase
1 demonstrations have been completed, and a draft of the functional specification is
complete and is updated as new prototypes are constructed. A true functional
specification, one in which the architectures of all functional prototypes are merged into a
single coherent architecture will be developed when prototyping is complete.

Phase 2 will require the addition of two Client Applications software engineers at the
senior level, due to the independence required in the prototyping phase. These engineers
will be responsible for following the project architectural design and propagating that
design into their implementation designs and the associated implementations so that
massive rework/reengineering isn’t later required. At full time, the prototypes in this phase
can be designed and implemented in approximately 8 weeks.

Phase 3 will require the same team of engineers, the participation of the project manager
at 30% time, and the participation of the first product manager at 10% time. It will, in the
later stages of the phase, involve QA personnel to assist in developing test cases to
validate the model. It is anticipated that this phase will take approximately 8-12 weeks.

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 108 -

References

Tools Used in ToolShed Design and Implementation

Spec: MS Word

Diagrams: Visio

UML: TogetherSoft Control Center 6.1

Planning: MS Project (none yet)

Development: XML Spy, Jbuilder 7, Jakarta Ant, CVS

Links and Reference Documents

XMLTalk

§ http://www.trcinc.com/knowledge/articles/XMLTalk.pdf

§ http://www.trcinc.com/knowledge/software/xmltalk/xmltalk.asp

§ http://groups.yahoo.com/group/xmltalk-dev/

RuleML Related

§ http://www.dfki.uni-kl.de/ruleml/

§ Extensible Rule Markup Language (XRML): http://xrml.kaist.ac.kr

§ Object Constraint Language (OCL):
http://www.csci.csusb.edu/dick/samples/ocl.html

§ Bowers, S. and Delcambre, L., “Representing and Transforming Model-Based
Information”, Oregon Graduate Institute.

§ Boley, H., Tabet, S, and Wagner, G., “Design Rationale of RuleML: A Markup
Lanaguage for Semantic Web Rules”: http://www.di.ufpe.br/~compint/aulas-
IAS/artigos/BolyTabetWagnerRuleML.html

§ SweetJess: http://userpages.umbc.edu/~mgandh1/

§ JESS: http://herzberg.ca.sandia.gov/jess/

§ Mandarax: http://www.mandarax.org

SOAP

§ GSOAP: http://sourceforge.net/projects/gsoap2

TOOLSHED PROJECT FUNCTIONAL SPECIFICATION, 1/4/2013

Confidential and Proprietary—For Internal Distribution Only
Copyright© 2003-2005 by EFI, Inc.

- 109 -

Validation

§ Validation with Java and XML Schema: http://www.javaworld.com/javaworld/jw-
09-2000/jw-0908-validation_p.html

Localization Server

§ Draft specification: Functional Specification 11/24/2003

Links to ToolShed Documents

Client Applications Forum on Teamsite: Index

Client Applications Java Style Guidelines: JavaStyleConventions-071003

Client Applications ToolShed Development Plan: Implementation Plan

