BACKGROUND OF THE ART

Understanding and processing natural languagethas spoken or written by humans, has long begoeh
in the field of artificial intelligence. As compars have been programmed of late to perform awgring
feats, such as defeating the world’s best humasschmaster in his game, other skills exhibited byios
are still seemingly beyond the reach of even thetmpowerful computers. Although a small child may n
be able to play chess, that child typically has fdmlity to process and understand its native teng
Computers, on the other hand, have yet to exhilyitsagnificant level of mastery in the realm of uvat
language processing.

One attempt at simulating natural language skdlshie virtual robot, or BOT. A BOT may use a
scripting language that matches input sentences &aoser against input templates of keywords. Awitin
template might, for example, take a group of rel&eywords and lump them together for the purpo$es
responding. Thus, words like “father, mother, beut sister” might be grouped together for a respdhat
relied on the concept of “family”. In addition tecognizing familiar words, a scripting languageatae
of recognizing the ways these words are used irsémence, and of tracking context across sentences
enables an associated processing model to trackeapdnd to a wide variety of utterances. Genertily
process model that makes use of a scripting largudig have a default response if none of the keylvo
templates matches the input sentence. Thus thed@@dys has a response.

Script programs may be written by human designavinlg little or no formal programming experience.
For the purposes of the discussion, some charsiitsriof a scripting language are described in Back
Normal form below. There are 4 characteristics gtapting language of interest in this discussidn:
topics, (2) subjects, (3) conditions, and (4) pattests. A topic is used to process user stateésnen

Topic <string> is
<Tst at enent >*
EndTopi ¢

There are three types of topics for the purposethisfdiscussion: standard, default, and sequence.
Standard topics are used to recognize and respartterances. If more than one standard topic neatah
utterance, then computational mechanisms can bé tos@rioritize and then select one to apply in
constructing a response. Two such mechanisms adifisfiy, which is based on the information cortten
in the utterance, and recency, which is based dohadubject most recently uttered is associatet wit
topic. Because standard topics are used to respontterances, they are executed first. Defaulic®p
respond when standard topics cannot respond. Hnersvo types of default topics. One default tappe
is associated with a standard topic, so it is eelad the subject of the standard topic. Anoth&udetopic
type is a universal default, sometimes called st'llae of defense", which will respond in the evirat no
other standard or default topic can respond. Defapics are tested in the order in which they appethe
program and the first applicable default is useluitd the response. Sequence topics are useddgmze
and respond to utterance sequences when the wi#srare connected by how the user responds. Sexjuenc
topics are executed only when explicitly accessea $witchTo statement, which is a form of redimett
Sequence topics have the lowest priority of thedhopic types described.

The body of each topic is a list of conditionaldds. These conditional blocks are executed imtber
found in the topic. If the condition of a condita block is false, execution goes on to the nertdional
block in the topic, or to the next topic if theme ao further conditional blocks. If the conditiisrtrue, the
commands and conditional blocks inside the bloekeatecuted, and further behavior of the program is
dependent on the keyword which ends the conditibleadk. If it ends with Done, execution ceaseslunt
the next input occurs. If it ends with Continugeeution continues with the next conditional blackhe
topic, or the next topic if there are no furthenditional blocks. If it ends with NextTopic, thest of the
current topic is skipped and execution continudh ttie next topic.

<Subj ect Li st> = Subjects <string> [, <string>]*;

The top level of a topic may contain one or mor&j8tts statements. Each asserts that the given
subjects are subjects of the topic. If a non-Ife@nd within the body of the topic is executedi@lics
which share at least one Subject with the topidaneght to the front of the "focus of attentioRdcus of
attention generally refers those things a persauisently thinking of. In this context, topics simg a
subject match part of what the user uttered andised as the first sorting mechanism for topicctele.

<Condition> = |If <conditionpatlist> Then |
| f Heard <patlist> Then |
| f Heard <pat> [and <pat>]* [and not <pat>]* |
| fRecall <memist> Then |
| fRecall <menref> [and <nenmref>]* [and not <menref>]* |
| f Dont Recal | <neml i st> Then |
| f Dont Recal | <menref> [and <menref>]* |
| f Chance <chance> Then |
| f Chance Then |
Al ways

<patlist> = <pat> [, <pat>]* | <synbol >

A pattern list is anything that evaluates to adisstrings. It can be either the name of a Paitiist
object or a list of patterns separated by commas.

A virtual robot generally embodies a particularuemse of discourse reflective of the subject maifer
interest -- e.g. a BOT developed to converse apetgonal computers should "know" something about
computers and their peripherals. The developmémstuoh a BOT employs the scripting language to
recognize aspects of the subject matter and respithc@ppropriate content. Often these "script paogs"

(or scripts) are written in an action-response tgfyée wherein the actual language supplied byuther
embodies an "action" to which the "response" igteuiinto the script program itself.

Scripts are generally written by a "BOT adminisirat(human or otherwise) by defining a list of
“categories” in which the BOT will be well converda Categories may comprise "topics" that are
recognizable by a runtime executive. Topics, imtunay comprise patterns or words that are matched
against the stream of input communication (in eitkgoken or written or any other suitable form of
communication) from the user.

The main drawback with constructing virtual BOTséabljst of categories is that the topics developed
cannot provide complete coverage of all subjecthénuniverse of discourse. The result is thatBoa
responds with the universal default. Such respossesonsidered "misses”, because the BOT demtesstra
"holes" in its knowledge of the universe of dis@miwhen it is forced to respond with the defaultekated
drawback is that the universal default responseigdiy provides insufficient guidance to the usena
their original input: it doesn't provide informatiaregarding why the input "confused" the BOT, and i
doesn’t provide a knowledgeable response to thatinp

The BOT development task must recognize that thed l&f quality and value evidenced by users is not
judged merely in discrete terms, but rather byotherall impression that they get from their intéi@e with
the BOT and by their level of satisfaction with théormation the BOT provides.

Thus, there is a need in the art to have a meansafly designing and creating virtual BOTs that
enables the BOT to effectively respond to arbitratgrances with knowledge regardless of the nuraber
topics implemented, guides the user toward progiditterances that will move the user closer to the
information they seek, provides the user with infation about what in the user’s utterance confiised
bot when that occurs, and performs these tasksinwéhframework the eases the maintanence and
entendability of the BOT’s capabilities.

SUMMARY OF THE INVENTION

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts a suitable operating environment for thigpses of the present invention.

Figure 2 depicts the topic types used to present a typgalementation of the present invention.

Figure 3 depicts developed topics in a universe of disaurs

Figure 4 depicts a procedural decomposition of a programits computational subtasks.

Figure5 depicts a collection of conceptual domains whiebatibe a universe of discourse.

Figure 6 depicts a uniform distribution of defaults in d@uerse of discourse.

Figure 7 depicts a set of developed topics in a unifornritistion of defaults.

Figure 8 expands the family view of a conceptual domaiskasvn in Figure 5.

Figure 9 depicts domain topics for the conceptual domaifoasd in Figure 8.

Figure 10 depicts the cauterization problem.

Figure 11 depicts the cauterization solution for a domaatiddren.

Figure 12 depicts the cauterization solution for a domapdsent and siblings.

Figure 13 depicts the tiebreaker problem.

DETAILED DESCRIPTION OF THE INVENTION

I. OVERVIEW AND GENERAL ARCHITECTURE

The term “robot” is used interchangably with “BOffroughout the remainder of this writeup. For the
purposes of this writeup, both “BOT” and “robotfeeto any program which interacts with a humarruse
in some fashion, and should not be assumed to wmflr to physically embodied robots. The term
"supervisor" is used interchangably with "admiragr'. The term "domain" is used to represent ayludd
knowledge that comprises a component of a universescourse that the "BOT" will be conversant with
The term "hierarchy" will be used to describe tlodlection of domains that represents the univefse o
discourse that the "BOT" will be designed to coseeabout. It should be noted that the term hieyarch
should not be construed to mean the collection tgita. Many means of representing the collectian ar
known to those skilled in the art, and the funciidy of the collection is not dependent on theadgpe
used to implement it.

Referring now to Figure 1, the operating environtiiemvhich the present invention applies is depicte
The environment can be characterized generallytme partitions: front end 102; BOT processor; 100
and back end 104. Front end 102 is generallyrti@@ment in which a human user 116 consultsta&ir
BOT interface 114 via a computer 112 that may beeoted to the BOT processor via a communications
link, such as through a server connected to theeret or alternatively directly connected to BO®gassor
100. It will be appreciated that many other mezfronnection to a BOT processor 100 are well kneawn
those skilled in the art and that the present itisarshould not be limited to any particular aspetftthe
general operating environment as disclosed herein.

Typically, human user 116 connects to a site whinsface of first impression is a virtual BOT
interface 114. The advantage for the site develigodat human user 116 may have a help or infiama

request that is easily handled via BOT interfacé. 1Today, it is not uncommon to find sites havénlist

of FAQs ("Frequently Asked Questions") that sehie purpose of handling very low level user consern
and questions. However, for more advanced questiorinteractions with the site, virtual BOTs will
become increasing popular.

In the operating environment that hosts the embedtrof the present invention, BOT interface 114 is
an instantiation of a process that is spawned by B@cessor 100 via connection 110. BOT proces30r
itself may comprise connection 110; runtime exe®ufprocess 106, compiler 107, and a set of BOT
programs 108. As users 116 log onto a site haB@®J processor 100 via connection 110, runtime
executive 106 executes an interaction routine ghades the discussion that occurs between useaid 6
BOT processor 100. Typically, a two way communaa dialogue occurs between user 116 and BOT
processor 100 wherein user 116 may ask questioake ndeclarative statements and other normal
communications patterns that humans typify. Ferthrposes of the present invention, “communication
is to be very broadly interpreted. Indeed, sugalmmmunications could be in the form of writterspoken
language, graphics, URL’s or the like that may bssed to and from a user to an automatic interface
program, such as the present invention.

In turn, runtime executive 106 parses the statesnemdl questions generated by the user and responds
according to a set of BOT programs 108. As willdigcussed in greater detail, BOT programs 108 are
typically created at the back end 104 as a sedafpts" that the BOT processor will tend to engiageith
user 116. For example, if the site using BOT pssoe 100 is a site for a reseller of personal cderpu
then BOT processor 100 should be designed to haqeistions and discussions concerning personal
computers and their peripherals in general. Tthesback end 104 will generate scripts that wiltlguthe
discussion concerning many computer-related topitBese script programs 108 are then compiled by
compiler 107 and the compiled code is incorporatéaruntime executive 106.

As the two-way discussions between user 116 antintanexecutive 106 continue, it is generally
desirable to engage in quality control of BOT pssme 100. This quality control is provided at backl
104 via feedback loop comprising a transcript elajues 118 and backtrace and state informatiorol20
the BOT processor 100; a supervisor 122 and edi?dr As transcripts develop over the course of
interacting with a user, the text of these tramsrare stored, together with the state of thameéxecutive
and backtrace of execution through the runtime @tkex code. This information forms the basis for
accurately diagnosing the runtime executive andléougging its performance. Such information may b
stored electronically in a storage media or codgbbinted out in human readable form.

Supervisor 122 analyzes the information at 118 a@6 with an eye towards optimizing the
performance of the runtime executive. Typicallyparvisor 122 could be another human, decidinbdf t
semantics captured by the system needs to be wgmjnadesponse to a dialog transcript that hasroedu
If so, supervisor 122 could optionally invoke aiit@dl124 to edit the programs that represent thesseic
framework of the runtime executive. These programsld then be re-compiled and incorporated in& th
runtime executive.

Although Figure 1 gives a general description afouss operating environments in which virtual BOTs
may exist, it will be appreciated that many othgemting environments are obvious to those skilietie
art and that the scope of the present inventionlshwt be so limited to the exemplary descriptiasgiven

above.

[I.BOT DEVELOPMENT

In general, BOT user 116 knows what kind of infotiora he seeks, but not necessarily how to artieulat
his request. Functionally, the implementation & &t described herein provides user 116 with Hiléy

to interact with BOT 100 on any level of abstrastibrectly associated with the universe of disceuBOT
100 should be able to achieve this either witmglsiresponse to a very specific question that iciately
identifies the users’ needs, or through dialogesponse to a series of increasingly specific gaeyigded
by BOT 100 through the BOT programs 108. The meishais independent of the order in which topics
are developed.

A. CURRENT MECHANISM

As mentioned in the background, BOT programs 108¢capts, are generally written by BOT administrat
122 by defining a list of categories in which BOQO1will be well conversant. These categories gdiyera
come from BOT administrator 122, FAQs, user inpui] other sources associated with the universe of
discourse. BOTs developed this way suffer from pnablems. First, BOT 100’s ability to answer quess

is dependent on the number of topics developed,thedinite number of topics developed by BOT
administrator 122 cannot completely cover all agpe€ the organization associated with the univerfse
discourse. Thus, it is highly likely that queriesde by BOT user 116 will result in "default” respes.
Second, the development of BOT 100 follows speci@eds/interests of administrator 122, rather than
systematic, coherant approach. Thus there is nereobe between the topics or their defaults.

Figure 3 illustrates the problem that arises wh@&irBrograms incompletely cover the universe of
discourse. Universe of discourse 300 is compriséhase topics 302 that have been developed. Exqut t
302 potentially has its own default 304. The conhteas remaining when all topic-related conteaasr
are covered are responded to by universal def@gltshich will be "hit" by all off-topic user quess. Such
responses are considered "misses", because thaB®dnstrates "holes" in its knowledge of the ursger
of discourse when it is forced to respond withfadk. Since the defaults 304 are related to tp& rather
than to each other, or to the universe of discquristing defaults 304 or 306 provides the usehuiitle
information of value that would assist in contingiithe conversation. There is thus an inherant &k
problem in developing BOTS from a list of topicsn& BOT 100 is a conversational agent, its value
derives entirely from how well it interacts withars 116, where the word "well" may be defined i
of knowlege content BOT 100 conveys, its friendisiehow easily it is "confused”, and how much
interaction is required for user 116 to find whasought. If user 116 asks questions that conf@g B0,
then BOT 100 is seen as "stupid" and its valuensrdshed.

The embodiment of the current invention implemeé3@TI 100 by designing a framework of defaults
in such a way that it is impossible for BOT 100b® asked a question that cannot be answered. The
structural foundation for this framework, and theeracting mechanisms associated with it, comphise
art described in the remaining sections.

B. APPLICABLE SOFTWARE DESIGN/DEVELOPMENT TOOLS

BOT programs 108 can be thought of as a progratreitraditional computer engineering framework.tEac
can be decomposed to increasingly specific compenen

Figure 4 illustrates a typical procedural decomipmsj because in both the result can be decomposed
to increasingly specific tasks. In the traditiofr@mework, program 402 is decomposed into constitue
functional components, or tasks. The "Initializej@ats" 404, "Input Data" 406, "Do Calculations" 4@8d
"Output Data" 410 tasks are independent functigasks that, together, comprise program 402. The
functional components interact through data objeEsch functional component (404-410) is itself
decomposed to those functional tasks that comjitrigeor example, the "Do Calculations" 408 task is
decomposed to "Perform Analysis" 412 and "Continest" 414 subtasks. The decomposition continues to
a point where the designer/developer is satisfiatl source code can be developed. The tasks déveis
are called "terminal" tasks, because they aremth&wr decomposed. In the software development task,
intermediate tasks, such as "Do Calculations" 48& used to organize the functions of their
subcomponents, and their effects are otherwisee®i. Terminal tasks implement the actual funcligna
of program 402.

Once a procedural decomposition is designed, a@nogan be implemented without developing any
of the terminal functionality. A problem that oftarises in software design and development isstheency
for developers to develop the terminal functiowaliithout first implementing the supporting frameko
depicted by program structure 400. This problenanslogous to developing BOT topics without a
supporting content framework. The difference ig tine BOT can still function, though its functios i
severely hampered, whereas a program cannot. Sefemgineering has a tool, called a function stiod,
enables the developer to implement the frameworgrofram 402 without implementing the terminal
functionality. The stub is a structure that adhéoebe input/output requirements of program 4@&sign,
but implements none of the functionality. For imediate tasks, stubs comprise the appropriateiumct
calls to subcomponent tasks. Using this approdehsoftware developer can implement a large program
without implementing any of the functionality, atiten replace the empty stubs with the actual cbde t
implements the design algorithms for a particudakt

The art described herein conceptually makes usthehierarchical/procedural decomposition and
function stub to develop a BOT that has an orgaiizal structure and is developed around a hiereath
framework of defaults. The analog to program 4®2’&tional component is called a "domain". The agal
to program 402’'s functional decomposition is a eahtdecomposition called a domain "hierarchy." The
analog to the function stub is the "domain defalegardless of the user’s query, or the degretept
development, the BOT developed with a domain héfraand domain defaults can answer the user and
even direct the user toward what they seek.

C.HIERARCHICAL DECOMPOSITION OF THE UNIVERSE OF DISCOURSE

Every universe of discourse can be described aswping of different content components that can be

hierarchically decomposed. Using a virtual robofptovide information about a particular universe of
discourse, one must understand how that univedecismposed and design the robot around the at=tcia
hierarchy.

Figure 5 depicts a domain hierarchy for "Compan§2.5The decomposition represents the sum total
of all information about the company, which is depwsed into four informational and functional
components, "Information" 504, "Products” 506, &mgs" 508, and "Sales" 510. The "Products"
component 506 is shown further decomposed intethamponents, "Widgets" 512, "Flingys" 514, and
"Gadgets" 516. The pictured decomposition is typibat unimportant. What is important is that the
combination of components completely describesotfganization, analogous to the relationship of the
functional components (404-412) and program 4(Riguire 4.

Each component 502-516 in hierarchy 500 is call&tbanain." A domain represents an informational
aspect of the organization. This type of hierarshgalled a "component" hierarchy, in that the domma
under the top, or "root," domain (i.e., domain 5@2¢ considered components of domain 502. Thus,
“Information” 504 is a component of “Company” 50the reverse is not true (i.e., “Company" 502 is not
a component of “Information” 504). A terminal dom&s one which has no subdomains. Just as a prégram
functionality is implemented in its terminal comporis, BOT 100s specific content is implementedsn i
terminal domains. The overall hierarchical deconitjms500 is called a domain "hierarchy."

D. DOMAIN TOPICS

The domain analog to the function stub is a meamarihat allows BOT 100 to respond in lieu of topic
development associated with a terminal domain. démain stub is effectively a default response to a
query. It is thus referred to as a domain default.

Figure 6 illustrates the universe of discourse R3BOT 100 when it is developed using a domain
hierarchy and domain defaults (i.e., stubs), asoepp to the largely vacant universe of discourde 30
depicted in Figure 3. The universe of discoursei8dtbw completely divided into non-overlappingase
602 that represent the domains in hierarchy 5@ fiypes of queries can be made to BOT 100 indfeu
terminal topic development: (1) relevant and unifeor (2) irrelevant. A "relevant” query is oméhich
hits a domain in the universe of discourse (i.a@pmain in the hierarchy). A "specific" query iseothat
would hit a terminal domain topic. Thus a releviant unspecific query should hit an intermediate divm
in the hierarchy. An "irrelevant" query is one whimisses the domain associated with the currenisfot
attention or, in the worst case, the universe séalirse (i.e., hits no domains in the hierarchgsjite the
fact that no topics are shown in Figure 6, BOT 400 respond in a coherent manner to relevant but
unspecific queries as well as irrelevant queries.

Figure 7 illustrates that topics 302 could be depet! for any terminal domain, in any order, onae th
domain hierarchy and its defaults are in place.

The analogy to a program decomposition and a fandtub breaks down with a virtual robot in three

ways: (1) the user/program interaction is differdwatn a user/BOT interaction, (2) the relationgigpveen
program components is different than the relatigmbbtween hierarchy domains, and (3) the funciioip
responds differently than the domain default. fpregram, a user has very specific points wheretirgu
allowed, and very specific points were output isduced, whereas BOT user 116 could possibly interac
with BOT 100 at any domain as mentioned above. k\egg the program user would have no use for output
at intermediate points, since all that is necessatlye functional implementation at component ieais.

The domains in a virtual bot hierarchy are alwajated by content, so every domain from root dorb@ix

to a particular terminal domain can provide a \eéatégree of content for the terminal domain. Assaut,

a query directed at "Widgets" 512, if made in ausagvay, could be responded to by "Products” 506, or
even "Company" 502. Finally, the function stub msge may or may not have a value, but the domain
default always has a language response.

For example, if the terminal domain is "Widgets25then domain "stubs" are required for each of the
"Company" 502, "Products" 506, and "Widgets" 512ndmns, because user 116 could make a query
regarding "Widgets" 512 that could hit domain défat either "Products” 506 or "Company" 502,
depending on the degree query specificity. Anyheffollowing queries/comments could be issued ley us
116 with respect to widgets:

Q1 - "Do you have any widgets?"

Q2 - "What kind of widgets do you have?"
Q3 - "Widgets"

Q4 - "What products do you have?"

Q5 - "What do you have?"

Q6 - "Do penguins live here?"

The so-called domain "stubs”, or "defaults”, couddpond to these queries without any specific
information regarding widgets being developed. Stedponses would look like the following:

Q1 - "Do you have any widgets?"

Al - "Yes, we have a number of widgets, would yika to see a listing, would you like informationcaib a
particular type of widget, or would you like to seer inventory?"

Q2 - "What kind of widgets do you have?"

A2 - "We have red, green and blue widgets. Would ljke a feature comparison chart or informatiooutb
a particular model?"

Q3 - "Widgets"

A3 - "Widgets are one of our products. They aredusemany industrial applications. We also manufeet
and sell flingys and gadgets."”

Q4 - "What products do you have?"

A4 - "We manufacture and sell widgets, flingys, ajadigets. Would you like to know more about any of
these, or are you interested in our inventory of @fthem."

Q5 - "What do you do?"

A5 - "l am glad you asked that. We are a small nfecturing company. We design and build the besgwid
ets, flingys and gadgets money can buy. Would ijk@rhore information on a particular product?"

Q6 - "Do penguins live here?"
A6 - "I'm sory, | do not understand what you medferen’t we just talking about our company’s prod@ct

10

Notice that all of the queries are a bit unspegditd that there are different types of responséiset
different types of queries. In query Q1, it is wwarl whether user 116 is seeking information abdtier
the organization produces widgets, what kind ofgeid, or whether user 116 wants to know how maay ar
in stock. The answer must be a combination of wiwatld be at a terminal domain and information aietdi
from the "Sales" 510 domain. In query Q2, the retjigereally for an enumeration of widget typeg, ibis
vague because what the user wants to know abogewgds unspecified. The response should provitie bo
the information requested and provide options feming that information. Query Q3 only mentions the
term "Widgets" itself, and so BOT 100 can only assuhat user 116 seeks to know more about widgets,
or maybe what role they play in the organizationefy Q4 is more general, in that it refers to afthe
products this company has. The response is, agairgnumeration of product types, and should look
similiar to the answer to query Q1. Query Q5 igaxiely general, but the response still enables 1iser
to provide a new query the will advance closerhe widget information sought. Finally, query 6 is
irrelevant to the current conversation. The respai®ws that BOT 100 is confused, but also attetopts
help user 116 by reminding user 116 about the pusviopic of conversation.

Domain Family Relationshipsand Topic Types

A function stub may return O or more different abjgalues. Similarly, there is variety in the typss
default responses BOT 100 can make. Unlike thetfoim stub, the robot can only say one thing ane t
Thus there is a need to have more than one tydefafilt associated with each domain. The number and
type of domain defaults is based on the concejméaimational relationships a domain has in the diom
hierarchy.

Figure 8 illustrates the family relationships foet"Products” 506 domain. There are three kinds of
relationships with respect to a domain: (1) it hasngle parent 802, (2) it has perhaps many gbl804,
and (3) it has perhaps many children 808. A donsgiarent represents the more abstract domain ahwhi
domain 806 is a component. The parent 802 to doB@#bris represented in Figure 8 with "Company"” 502.
A domain’s siblings share the same parent, andehthiesame level of abstraction, with the domaitién
hierarchy. A sibling 804 to domain 806 is represdrih Figure 8 with "Information” 504. The connecti
between domain 806, its parent 802, and its chl8 B shown with a solid line owing to the direct
relationships between them. The connection betwleaemain 806 and sibling 804 is shown as a dotte lin
because there is no direct connection betweenvibe Their relationship exists because they are both
components of parent 802. The other sibling domaimdd be "Services" 508 and "Sales" 510. A dongin’
children constitute the information categories tbamnprise the domain, as components. A child 808 of
domain 806 is represented in Figure 8 with "Flingy®4. The other children of domain 806 are "Wid{et
512 and "Gadgets" 516.

Domain family relationships are important in BOTOIecause they are directly associated with types
of queries and responses that can be made on airdofeere are three query/response types directly
associated with family relationships. A child queegponse is associated with queries that areaetdo
universe of discourse 300, unspecific, and basedamnain 806’s subcomponents. Queries Q2 and Q4
represent child queries, because the request enfameration of domain 806’s children. A siblingegu
response is associated with queries that are mlévainiverse of discourse 300, unspecific, argbtan
the domain 806’s definition or relationship tosiblings. Query Q3 represents a sibling query sihaely
mentions the domain. The response talks about thbatomain ("Widgets" 512) means and how it relates

11

to parent 802 with respect to its siblings. A parguery/response is associated with queries that ar
irrelevant to the previous query domain 806. Tyiycavhen a query hits a domain topic, the focus of
attention is set on that domain. When user 116 sgliery Q6 after having made query Q5, the focastis
on the domain topic that provided the Q5 resporsenamely "Products” 506. Since query Q6 is irratdv

to "Products" 506, the response informs user 186 BOT 100 is confused. In addition, the response
reminds user 116 what the last domain was, anghitsnt ("Company" 502, parent 802), so as to hedp t
user clarify the next query. Since the family quesgponse types provide information about the lonaif
domain 806 in domain hierarchy 500, they can bal s a navigational aid for assisting user 116 in
clarifying requests to BOT 100. This mechanisnstbatisfies one of the requirements of BOT 100gtesi

Figure 9 illustrates that family components and ifgrelated query/answer types are implemented
with three independent domain defaults. The chééadlt 902 focuses on domain children. The sibling
default 904 focuses on the domain siblings. Thematefault 904 focuses on the domain parent. Teget
the child, sibling, and parent defaults comprise ttomain defaults. Domain defaults are typically
implemented as standard topics, and so in bot dpu@nt they are called domain topics.

Domain topics (i.e., defaults) have an order otpdence based on the desire to ‘move’ user 116rclos
to a domain terminal, in which a standard topic lsamsed to fulfill their needs. Child 902 and isigl904
topics respond to relevent (i.e., in universe stdurse 300) utterances, so they have a higheegeace
than parent topics 906, which respond to irreleustierances. Child topics 902 preferred over siplopics
904 because they point downward, by talking aboutain children 808. These are most likely to bexdsk
and most likely to provide user 116 with appropriguidance. Sibling topics 904 are the next most
preferred, because they are still relevant, ang ik about domain siblings 804. Parent topics &@6the
least preferred, and point to the parent domain 882vill be disclosed below, the typical implemetian
mechanism will cause the domain topics to be exekcit a way that maintains this precedence ordering

(11 BOT IMPLEMENTATION

The operating environment that hosts the currertagiiment of the present invention uses Neurostwipt
implement BOT programs 108 and Neuroserver to implg BOT processor 100. It will appreciated by
those skilled in the art that implementations & ¢rrent invention need not be made using Neupisar
Neuroserver, and that other computational mechanisould be employed. Domain hierarchy 500 is
implemented with a file structure that mirrors tt@mains of hierarchy 500. This is typically donedase

of organization and maintanence purposes. Evenaitoim the hierarchy represents a directory bystdrae
name in the file system. Both default and non-détapics are implemented in files. Domain (i.eefallt)
topics are implemented in a file in the domain-nafinectory. Non-default topics are implemented filea

in domain terminals. Thus domain terminals have fites, one each for default and non-default topics
Domain (i.e., default) topics are implemented wiguroscript using standard topics 220. Standari¢gop
are also used to implement non-default responses ®esult, computational mechanisms are requiared t
distinguish and select between the two topic typesee such mechanisms, focus of attention, spayifi
and recency, have already been described. Tertapis will be more specific than any domain topics
Domains that are deeper in the hierarchy will beergpecific than domains higher in the hierarchy. |
addition, as will be disclosed below, child topiesl be more specific than sibling topics, whichliide
more specific than parent topics. These mechartisussvork in concert to satisfy the requirement8OfT
development. Below is a description of the impletagans of the child 902, sibling 904, and paredé 9

12

domain topics, followed by a description of implertsgion mechanisms used to maintain domain
hierarchies.

A.CHILD TOPICS

Child topics 902 are triggered by description at flaased queries to BOT 100. For example, if udér 1
makes query Q7, BOT 100 recognizes it as a degmriguestion, in that it basically asks for a dggimn

of what is available. Description questions canegelty be answered with an enumeration. If user 116
makes query Q8, BOT 100 recognizes it as a faquestion. Factual questions can generally be amslver
yes or no, but the response to query Q8 must liefasboth query types, so the yes answer is intphther
than explicit.

Q7 - "What educational programs do you have

A7 - "We have an employee reimbursement prograrddégree programs. We also have in-house training fo
non-degree certification programs."

Q8 - "Do you have an employee reimbursement progfdm

A8 - "We have an employee reimbursement prograrddégree programs. We also have in-house training fo
non-degree certification programs."

In Neuroscript, fact and description question typage parsed using ?FactQuestion and
?DescriptionQuestion, respectively. In queries @@ @8 the child topic 902 responds. In both cabes,
guestion is unspecific, because user 116 doegiabgtask for information on a specific program, &o
terminal standard topic cannot respond. But BOT dfi® help user 116 out, by elaborating what kirfds o
educational programs the company has. User 118®arclarify their request, and BOT 100 doesn’t look
stupid. The following is an example illustratingetNeuroscript for an "Education” child topic thadwid
respond to queries such as Q7 and Q8:

Topi ¢ "Random description or fact question about Education" is
Subj ects "Education”;
If (?DescriptionQuestion contains DOM EDUCATI ON) or
(?Fact Questi on contai ns DOM _EDUCATI ON)

Then
SayToConsol e "Trace -- Education, A answer";
Exanpl e "what ki nd of ducks swimin Education pool ?";
Say "Tal k about Education and, in particular, " +
"with respect to the children: Science Engi neering Business"
Done
EndTopi ¢

The specificity of the topic is based on the coreHirspecificity of ?DescriptionQuestion and
?FactQuestion. Note that the subject of the tdfiducation", is the same as the domain 806 name. Th
pattern list (as described in the background setidOM_EDUCATION, is initially implemented with a
single element by the name of domain 806. DuringTBIDO development, DOM_EDUCATION is
extended to include synonyms for education, sucttraming.” Domain pattern lists must be carefully
implemented so that domains don't clash, sincehelsseduce the ability of BOT 100 to answer queries

with the correct domain topic.

13

14

B. SIBLING TOPICS

Sibling topics 904 are triggered by direct refebased queries to BOT 100. For example, if usér 11
makes a query such as Q9 or Q10, BOT 100 recogitiass direct reference to domain 806 and respond
in two ways: (1) pseudo definition, and (2) infotioa about siblings, as exemplified by the respaiese
queries Q9 and Q10.

Q9 - "Education

A9 - "We have degree and certification educatigagnagrams here. We also have stock participatioaltine
insurance, paid holidays and retirement benefitefoployees."

Q10 - "Does employee education play a role in adearent at your company?"

A10 - "We have degree and certification educatigmagrams here. We also have stock participatiealth
insurance, paid holidays and retirement benefitefoployees."

The idea of the sibling topic 904 is that user h&6 mentioned domain 806 by nhame. In some cases, as
in query Q9, perhaps only the domain name is peaVid the query. In other cases, such as in quéf; Q
the query may be complex, but the only thing recxasie by BOT 100 is the direct reference. BOT 100
cannot be expected to direct user 116 downwardwbat it can do is provide a little information aibo
domain 806, and to provide user 116 with some médion about how domain 806 fits into the parent
domain 802 by talking about its sibling domains .8DHe response to query Q9 indicates that, if Ggér
is confused, providing some information about hauaation fits into the company’s benefits programs
might help them to restate their query with greatarity. Also notice, in the response to query hat a
direct reference can lead to inappropriate resgonse

Topi c "User nmentions Education, by itself" is
Subj ects "Education";
I f Heard DOM_EDUCATI ON

t hen
Exanpl e "Education”;
SayToConsol e "trace -- Education, B answer";
Say "We have educational support for enployees wishing to, " +
"further their professional growh in degree-granting " +
"prograns. W also have training prograns that lead to " +
"certification rather than degree objectives."
Done
EndTopi ¢

Once again, it is clear from the Neuroscript of $itding topic 904 that the domain 806 name is the
subject of the topic. In Neuroscript, direct referes are parsed using the "If Heard" mechanisnthdn
sibling topic, the "If Heard" mechanism is appliedthe domain pattern list, DOM_EDUCATION. "If
Heard" is also less specific than either "?Desiony@puestion” or "?FactQuestion", so the siblingicap
less likely to be selected than the child topid, being more general, it is more likely to matcrekevant
utterance.

15

C. PARENT TOPICS

Parent topics 906 are triggered by queries to BOQ that have nothing to do with the current foctis o
attention. For example, if user 116 previously madgiery about education, then education is cuyrére
focus of attention. If user 116 then makes a qsach as Q11, BOT 100 recognizes that the subjebieof
query isn’'t education, and so is irrelevant. Whes query is irrelevant, the parent topic 906 redppas
shown in the response to query Q11 below:

Q11 - 'Can | paraglide off the cliff in your back yard?

Al11 - "l am confused, what you have said is eitbercomplicated for me to understand, or | canretthe
relationship to our last topic, which was Educatiorservices."

There are any number of possibilities of why usks’d current query is unrecognizable, and BOT 100
simply isn’t smart enough to decide what to do.slish, parent topic 906 tells user 116 that it dbesn
understand what the user said, and reminds usethhiéhe last topic of conversation was aboutesrr
domain 806, but focuses the discussion on the pdmmain 802.

Topic "We are baffled, but the last topic was Education" is
Subj ects "Education";

| f Focused
Then
SayToConsol e "Trace -- Education, C response"
When Focused Exanple "Do you go sl edding on w nter nornings?"
Say "I am confused, what you have said is either too conplicated " +
"for me to understand, or | cannot see the relationship to " +

"our |last topic, which was Education or Services."
Focus Subjects "Services";
Done
EndTopi ¢

In this final example, it is seen that domain 8@éne is again the topic subject, though it is n@érn
associated with the test or the example. Domaini8@&ain referenced in the response, along with th
parent domain 802, but the parent domain 802 is@dal the focus list. In cases of non-relevanceh s1s
query Q11 above, it is important to show user haBOT 100 isn’t giving up on them, and so theckiag
up" response is viable.

Domain topics perform the same task for every dard&i6 in domain hierarchy 500, so the structure
of the each of the three domain topics is idengoalept that the domain 806 name changes from topic
topic. In the current implementation of the art,itmative process is used for creating and maiingi
domain topics.

D. DOMAIN INTERACTIONS

16

The connectivity in a domain hierarchy 500 resintster-domain interactions which affect domaipito
content. Two such interactions are important ten() changes to the number of domains 806 iratday
500, and (2) interactions between the domain 8@6asaacross major branches of hierarchy 500.

Domain Hierarchy Content Changes

The structure of domain hierarchy 500 imposes reguénts on the content of domain topics when family
members change. The normal development of BOTs#@6 three types of change: (1) add domain 806 to
hierarchy 500, (2) remove domain 806 from hierars@§, and (3) cauterize domain 806 in hierarchy. 500
In the first two cases, the number of componentieuparent 802 changes, and this changes thetopild

902 and sibling topic 904 say statements. For exanip Figure 5, if two new domains are added under
"Services" 508, called "Education” and "Trainintiien the child topic 902 for Services domain 50&mu
be edited to include the "Education" and "Trainiigmains. In addition, the "Education” domain sili
topic 904 has to be edited to include the "Traihibgmain, and vice versa.

Domain Cauterization

Two scenarios exist wherein domain hierarchy 500niable to provide accurate support in universe of
discourse 300. The first scenario is when BOT adbtrator 122 chooses to restrict the universe of
discourse with respect to a more generic domaimariby. For example, in hierarchy 500, BOT
administrator 122 may choose to disable the dordaiiaults for the "Services" 508 domain without
changing the structure of hierarchy 500. The sesmedario is when BOT administrator 122 chooses not
to restrict the universe of discourse, but theda@velopment for a domain subtree (all domainsvbel
particular domain) is incomplete. Using the samengple above, during BOT 100 testing, perhaps sdme o
the non-default topics under "Services" 508 areonmglete, so rather than have BOT 100 respond
incoherently, BOT administrator 122 again disaltihessubtree.

Figure 10 depicts a "cauterization", which is tipemtion performed in both scenarios. A cautedrati
recursively replaces the domain topic say statesneith a single statement that refers back to tiue r
domain in the cauterization. In this example, theterization subtree is shown as a shadowed tgang|

Figure 11 shows that each domain topic inside tealewed triangle refers back to the "Products”
domain. "Products" domain 506 is being cauterizedit is called the "cauterization root" domain.eTh
cauterization say statement is basically the samegich topic type inside the triangle, and willllustrated
with a child topic 902 for the "Widgets" 512 domain

Topi ¢ "Random description or fact question about Wdgets" is
Subj ects "W dgets";
If (?DescriptionQuestion contains DOM W DGETS) or
(?Fact Questi on contai ns DOM W DGETS)
Then

17

SayToConsol e "Trace -- Wdgets, A answer";
Exanpl e "what ki nd of ducks swimin Wdgets pool ?"
Say "I'm not trained to talk about Products at this " +
"time, sorry.";
Done
EndTopi ¢

Regardless of which domain topic in the cauter@atioot’'s subtree matches user 116’s query, the
response should be the same. They all point badRraxucts" 506.

Figure 12 depicts domain 806’s family members #nataffected by a cauterization. When one or more
of many child domains 806 under a parent 802 isecened, then the parent topic 906 must be modifed
remove the domain names from the child topic 90@, ® remove the domain name as a sibling in the
sibling topic 904. In the current implementationtbé art, domain cauterization can automatically be
performed, reversed, and reperformed using a diftecauterization root domain, over an over again,
without adversely affecting the coherence and ooit of the hierarchy.

Domain Tiebreakers

There is a certain degree of redundancy in any-gkedigned domain hierarchy. Many instances cae aris
in the development of hierarchy 500 where domapictsubjects and pattern lists in different hiehgrc
branches "clash," meaning that they will contaie on more of the same values. In Neuroscript, onky
topic can respond at a time, so only one of perlmpry clashing topics will have its say statement
executed. In cases where domain clashes are igelntfOT 100 should be designed to implement what i
termed in the art as a "tiebreaker." The tiebrea&directs control to a sequence topic 240. Theemoe
topic directs user 116 to select from the differgubjects possible, the content for which comesn ftioe
say statements of the affected topics.

Figure 13 illustrates an example tiebreaker scenatween two domains relating to "Sales," one of
which is a component of the "Information" subtredjle the other is a component in the "Sales" sgbtr
In each case the meaning of "Sales" is slightlfedint, but BOT 100 would match on the word “sales”
and so "sales" would be a member of each of thenpdists for topics in these domains. The sege¢gic
informs user 116 that BOT 100 knows about “Salesd number of contexts, and asks user 116 to select
one and continue. This way, it becomes clear ti@&f B0O recognizes that user 116 is making a general
query but perhaps isn't aware that the query carepgonded to in different ways. The sequence tigpic
intended to help user 116 obtain an answer to tlegygwithout making assumptions as to which of the
domains the query references. The say statemettis iiebreaker are typically copied from the claitdd
sibling domain topics (902 and 904) directly, thbubey need not be. The following Neuroscript shows
how the domain tiebreaker for a child topic is ierpknted.

Topic "Tiebreaker A for PatternlList SALES" is
Subj ects "Information Sal es", "Conpany Sal es";
I f Heard "sal e#"

18

Then
Swi tchTo "Sequence Ti ebreaker A for PatternList Sales"
Done
EndTopi ¢

Sequence Topic "Sequence Ti ebreaker A for PatternList Sales" is
Al ways
SayToConsol e "Trace -- Sal es Ti ebreaker, A sequence answer";
Say "I know about <I>Information</I> Sales and <l >Conpany</I|> " +
"Sal es. Wiich would you like to know nore about ?"

Wi t For Response;
I f Heard DOM_| NFORMATI ON

Then
SayToConsol e "Trace -- Sal es Ti ebreaker, A information answer"”;
Say "I can tell you about what our overall sales were, what our " +

"sal es per product type were, and what our sales for " +
"particul ar products were.";
Focus Subj ects "FlI NANCI ALSALES"

Done
| f Heard OUTREACH
Then
SayToConsol e "Trace -- Sal es Ti ebreaker, A outreach answer";
Say "I can tell you about things |ike how our sal es departnent " +

"wor ks, and what they have in mnd for the future.";
Focus Subj ects "OUTREACHSALES";

Done

O herwi se Al ways

SayToConsol e "Trace -- Sal es Ti ebreaker, A otherw se always answer";

Say "I thought we were tal ki ng about sales, but anyway..."
I nt errupt Sequence;

Done

Swi t chBack
EndTopi ¢

The first thing to notice in the tiebreaker is thatlways has multiple subjects, whereas in otbpics
it is possible, but not necessary, to have multflbjects. Second, the recognition mechanism fer th
tiebreaker is an "If Heard" mechanism. If executaahtrol is switched to the sequence topic. Theisege
topic requests user 116 to select between thelasbiog subjects and waits for user 116’s respdhaser
116 selects one of the pattern lists, then theorespis taken from the associated domain’s topiod that
domain’s subject is focuses. If neither of the grattlists is heard, then a tiebreaker defaultdadd as a
response and the sequence is terminated.

V. THE PROCESSOF IMPLEMENTING A HIERARCHY-BASED BOT

1. Create a hierarchical description of the orgaiunsbeing modeled
2. Create a file system architecture that mirroesdbmain hierarchy
3. Create domain topics for the hierarchy

4. Create domain pattern lists for the hierarchy

5. Perform any necessary cauterizations

6. Create any necessary tiebreakers

7. Proceed with standard topic development in dorteaiminals

8. Develop standard topic pattern lists

9. Cauterize/uncauterize as necessary
CLAIMS

1.

2.

3.

4.

5.

ABSTRACT 57

19

BACKGROUND OF THE ART

Understanding and processing natural languagethas spoken or written by humans, has long begoeh
in the field of artificial intelligence. As compars have been programmed of late to perform awgring
feats, such as defeating the world’s best humasschmaster in his game, other skills exhibited byios
are still seemingly beyond the reach of even thetmpowerful computers. Although a small child may n
be able to play chess, that child typically has fdmlity to process and understand its native teng
Computers, on the other hand, have yet to exhilyitsagnificant level of mastery in the realm of uvat
language processing.

One attempt at simulating natural language skdlshie virtual robot, or BOT. A BOT may use a
scripting language that matches input sentences &aoser against input templates of keywords. Awitin
template might, for example, take a group of rel&eywords and lump them together for the purpo$es
responding. Thus, words like “father, mother, beut sister” might be grouped together for a respdhat
relied on the concept of “family”. In addition tecognizing familiar words, a scripting languageatae
of recognizing the ways these words are used irsémence, and of tracking context across sentences
enables an associated processing model to trackeapdnd to a wide variety of utterances. Genertily
process model that makes use of a scripting largudig have a default response if none of the keylvo
templates matches the input sentence. Thus thed@@dys has a response.

Script programs may be written by human designavinlg little or no formal programming experience.
For the purposes of the discussion, some charsiitsriof a scripting language are described in Back
Normal form below. There are 4 characteristics gtapting language of interest in this discussidn:
topics, (2) subjects, (3) conditions, and (4) pattests. A topic is used to process user stateésnen

Topic <string> is
<Tst at enent >*
EndTopi ¢

There are three types of topics for the purposethisfdiscussion: standard, default, and sequence.
Standard topics are used to recognize and respartterances. If more than one standard topic neatah
utterance, then computational mechanisms can bé tos@rioritize and then select one to apply in
constructing a response. Two such mechanisms adifisfiy, which is based on the information cortten
in the utterance, and recency, which is based dohadubject most recently uttered is associatet wit
topic. Because standard topics are used to respontterances, they are executed first. Defaulic®p
respond when standard topics cannot respond. Hnersvo types of default topics. One default tappe
is associated with a standard topic, so it is eelad the subject of the standard topic. Anoth&udetopic
type is a universal default, sometimes called st'llae of defense", which will respond in the evirat no
other standard or default topic can respond. Defapics are tested in the order in which they appethe
program and the first applicable default is useluitd the response. Sequence topics are useddgmze
and respond to utterance sequences when the wi#srare connected by how the user responds. Sexjuenc
topics are executed only when explicitly accessea $witchTo statement, which is a form of redimett
Sequence topics have the lowest priority of thedhopic types described.

The body of each topic is a list of conditionaldds. These conditional blocks are executed imtber
found in the topic. If the condition of a condita block is false, execution goes on to the nertdional
block in the topic, or to the next topic if theme ao further conditional blocks. If the conditiisrtrue, the
commands and conditional blocks inside the bloekeatecuted, and further behavior of the program is
dependent on the keyword which ends the conditibleadk. If it ends with Done, execution ceaseslunt
the next input occurs. If it ends with Continugeeution continues with the next conditional blackhe
topic, or the next topic if there are no furthenditional blocks. If it ends with NextTopic, thest of the
current topic is skipped and execution continudh ttie next topic.

<Subj ect Li st> = Subjects <string> [, <string>]*;

The top level of a topic may contain one or mor&j8tts statements. Each asserts that the given
subjects are subjects of the topic. If a non-Ife@nd within the body of the topic is executedi@lics
which share at least one Subject with the topidaneght to the front of the "focus of attentioRdcus of
attention generally refers those things a persauisently thinking of. In this context, topics simg a
subject match part of what the user uttered andised as the first sorting mechanism for topicctele.

<Condition> = |If <conditionpatlist> Then |
| f Heard <patlist> Then |
| f Heard <pat> [and <pat>]* [and not <pat>]* |
| fRecall <memist> Then |
| fRecall <menref> [and <nenmref>]* [and not <menref>]* |
| f Dont Recal | <neml i st> Then |
| f Dont Recal | <menref> [and <menref>]* |
| f Chance <chance> Then |
| f Chance Then |
Al ways

<patlist> = <pat> [, <pat>]* | <synbol >

A pattern list is anything that evaluates to adisstrings. It can be either the name of a Paitiist
object or a list of patterns separated by commas.

A virtual robot generally embodies a particularuemse of discourse reflective of the subject maifer
interest -- e.g. a BOT developed to converse apetgonal computers should "know" something about
computers and their peripherals. The developmémstuoh a BOT employs the scripting language to
recognize aspects of the subject matter and respithc@ppropriate content. Often these "script paogs"

(or scripts) are written in an action-response tgfyée wherein the actual language supplied byuther
embodies an "action" to which the "response" igteuiinto the script program itself.

Scripts are generally written by a "BOT adminisirat(human or otherwise) by defining a list of
“categories” in which the BOT will be well converda Categories may comprise "topics" that are
recognizable by a runtime executive. Topics, imtunay comprise patterns or words that are matched
against the stream of input communication (in eitkgoken or written or any other suitable form of
communication) from the user.

The main drawback with constructing virtual BOTséabljst of categories is that the topics developed
cannot provide complete coverage of all subjecthénuniverse of discourse. The result is thatBoa
responds with the universal default. Such respossesonsidered "misses”, because the BOT demtesstra
"holes" in its knowledge of the universe of dis@miwhen it is forced to respond with the defaultekated
drawback is that the universal default responseigdiy provides insufficient guidance to the usena
their original input: it doesn't provide informatiaregarding why the input "confused" the BOT, and i
doesn’t provide a knowledgeable response to thatinp

The BOT development task must recognize that thed l&f quality and value evidenced by users is not
judged merely in discrete terms, but rather byotherall impression that they get from their intéi@e with
the BOT and by their level of satisfaction with théormation the BOT provides.

Thus, there is a need in the art to have a meansafly designing and creating virtual BOTs that
enables the BOT to effectively respond to arbitratgrances with knowledge regardless of the nuraber
topics implemented, guides the user toward progiditterances that will move the user closer to the
information they seek, provides the user with infation about what in the user’s utterance confiised
bot when that occurs, and performs these tasksinwéhframework the eases the maintanence and
entendability of the BOT’s capabilities.

SUMMARY OF THE INVENTION

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts a suitable operating environment for thigpses of the present invention.

Figure 2 depicts the topic types used to present a typgalementation of the present invention.

Figure 3 depicts developed topics in a universe of disaurs

Figure 4 depicts a procedural decomposition of a programits computational subtasks.

Figure5 depicts a collection of conceptual domains whiebatibe a universe of discourse.

Figure 6 depicts a uniform distribution of defaults in d@uerse of discourse.

Figure 7 depicts a set of developed topics in a unifornritistion of defaults.

Figure 8 expands the family view of a conceptual domaiskasvn in Figure 5.

Figure 9 depicts domain topics for the conceptual domaifoasd in Figure 8.

Figure 10 depicts the cauterization problem.

Figure 11 depicts the cauterization solution for a domaatiddren.

Figure 12 depicts the cauterization solution for a domapdsent and siblings.

Figure 13 depicts the tiebreaker problem.

DETAILED DESCRIPTION OF THE INVENTION

I. OVERVIEW AND GENERAL ARCHITECTURE

The term “robot” is used interchangably with “BOffroughout the remainder of this writeup. For the
purposes of this writeup, both “BOT” and “robotfeeto any program which interacts with a humarruse
in some fashion, and should not be assumed to wmflr to physically embodied robots. The term
"supervisor" is used interchangably with "admiragr'. The term "domain" is used to represent ayludd
knowledge that comprises a component of a universescourse that the "BOT" will be conversant with
The term "hierarchy" will be used to describe tlodlection of domains that represents the univefse o
discourse that the "BOT" will be designed to coseeabout. It should be noted that the term hieyarch
should not be construed to mean the collection tgita. Many means of representing the collectian ar
known to those skilled in the art, and the funciidy of the collection is not dependent on theadgpe
used to implement it.

Referring now to Figure 1, the operating environtiiemvhich the present invention applies is depicte
The environment can be characterized generallytme partitions: front end 102; BOT processor; 100
and back end 104. Front end 102 is generallyrti@@ment in which a human user 116 consultsta&ir
BOT interface 114 via a computer 112 that may beeoted to the BOT processor via a communications
link, such as through a server connected to theeret or alternatively directly connected to BO®gassor
100. It will be appreciated that many other mezfronnection to a BOT processor 100 are well kneawn
those skilled in the art and that the present itisarshould not be limited to any particular aspetftthe
general operating environment as disclosed herein.

Typically, human user 116 connects to a site whinsface of first impression is a virtual BOT
interface 114. The advantage for the site develigodat human user 116 may have a help or infiama

request that is easily handled via BOT interfacé. 1Today, it is not uncommon to find sites havénlist

of FAQs ("Frequently Asked Questions") that sehie purpose of handling very low level user consern
and questions. However, for more advanced questiorinteractions with the site, virtual BOTs will
become increasing popular.

In the operating environment that hosts the embedtrof the present invention, BOT interface 114 is
an instantiation of a process that is spawned by B@cessor 100 via connection 110. BOT proces30r
itself may comprise connection 110; runtime exe®ufprocess 106, compiler 107, and a set of BOT
programs 108. As users 116 log onto a site haB@®J processor 100 via connection 110, runtime
executive 106 executes an interaction routine ghades the discussion that occurs between useaid 6
BOT processor 100. Typically, a two way communaa dialogue occurs between user 116 and BOT
processor 100 wherein user 116 may ask questioake ndeclarative statements and other normal
communications patterns that humans typify. Ferthrposes of the present invention, “communication
is to be very broadly interpreted. Indeed, sugalmmmunications could be in the form of writterspoken
language, graphics, URL’s or the like that may bssed to and from a user to an automatic interface
program, such as the present invention.

In turn, runtime executive 106 parses the statesnemdl questions generated by the user and responds
according to a set of BOT programs 108. As willdigcussed in greater detail, BOT programs 108 are
typically created at the back end 104 as a sedafpts" that the BOT processor will tend to engiageith
user 116. For example, if the site using BOT pssoe 100 is a site for a reseller of personal cderpu
then BOT processor 100 should be designed to haqeistions and discussions concerning personal
computers and their peripherals in general. Tthesback end 104 will generate scripts that wiltlguthe
discussion concerning many computer-related topitBese script programs 108 are then compiled by
compiler 107 and the compiled code is incorporatéaruntime executive 106.

As the two-way discussions between user 116 antintanexecutive 106 continue, it is generally
desirable to engage in quality control of BOT pssme 100. This quality control is provided at backl
104 via feedback loop comprising a transcript elajues 118 and backtrace and state informatiorol20
the BOT processor 100; a supervisor 122 and edi?dr As transcripts develop over the course of
interacting with a user, the text of these tramsrare stored, together with the state of thameéxecutive
and backtrace of execution through the runtime @tkex code. This information forms the basis for
accurately diagnosing the runtime executive andléougging its performance. Such information may b
stored electronically in a storage media or codgbbinted out in human readable form.

Supervisor 122 analyzes the information at 118 a@6 with an eye towards optimizing the
performance of the runtime executive. Typicallyparvisor 122 could be another human, decidinbdf t
semantics captured by the system needs to be wgmjnadesponse to a dialog transcript that hasroedu
If so, supervisor 122 could optionally invoke aiit@dl124 to edit the programs that represent thesseic
framework of the runtime executive. These programsld then be re-compiled and incorporated in& th
runtime executive.

Although Figure 1 gives a general description afouss operating environments in which virtual BOTs
may exist, it will be appreciated that many othgemting environments are obvious to those skilietie
art and that the scope of the present inventionlshwt be so limited to the exemplary descriptiasgiven

above.

[I.BOT DEVELOPMENT

In general, BOT user 116 knows what kind of infotiora he seeks, but not necessarily how to artieulat
his request. Functionally, the implementation & &t described herein provides user 116 with Hiléy

to interact with BOT 100 on any level of abstrastibrectly associated with the universe of disceuBOT
100 should be able to achieve this either witmglsiresponse to a very specific question that iciately
identifies the users’ needs, or through dialogesponse to a series of increasingly specific gaeyigded
by BOT 100 through the BOT programs 108. The meishais independent of the order in which topics
are developed.

A. CURRENT MECHANISM

As mentioned in the background, BOT programs 108¢capts, are generally written by BOT administrat
122 by defining a list of categories in which BOQO1will be well conversant. These categories gdiyera
come from BOT administrator 122, FAQs, user inpui] other sources associated with the universe of
discourse. BOTs developed this way suffer from pnablems. First, BOT 100’s ability to answer quess

is dependent on the number of topics developed,thedinite number of topics developed by BOT
administrator 122 cannot completely cover all agpe€ the organization associated with the univerfse
discourse. Thus, it is highly likely that queriesde by BOT user 116 will result in "default” respes.
Second, the development of BOT 100 follows speci@eds/interests of administrator 122, rather than
systematic, coherant approach. Thus there is nereobe between the topics or their defaults.

Figure 3 illustrates the problem that arises wh@&irBrograms incompletely cover the universe of
discourse. Universe of discourse 300 is compriséhase topics 302 that have been developed. Exqut t
302 potentially has its own default 304. The conhteas remaining when all topic-related conteaasr
are covered are responded to by universal def@gltshich will be "hit" by all off-topic user quess. Such
responses are considered "misses", because thaB®dnstrates "holes" in its knowledge of the ursger
of discourse when it is forced to respond withfadk. Since the defaults 304 are related to tp& rather
than to each other, or to the universe of discquristing defaults 304 or 306 provides the usehuiitle
information of value that would assist in contingiithe conversation. There is thus an inherant &k
problem in developing BOTS from a list of topicsn& BOT 100 is a conversational agent, its value
derives entirely from how well it interacts withars 116, where the word "well" may be defined i
of knowlege content BOT 100 conveys, its friendisiehow easily it is "confused”, and how much
interaction is required for user 116 to find whasought. If user 116 asks questions that conf@g B0,
then BOT 100 is seen as "stupid" and its valuensrdshed.

The embodiment of the current invention implemeé3@TI 100 by designing a framework of defaults
in such a way that it is impossible for BOT 100b® asked a question that cannot be answered. The
structural foundation for this framework, and theeracting mechanisms associated with it, comphise
art described in the remaining sections.

B. APPLICABLE SOFTWARE DESIGN/DEVELOPMENT TOOLS

BOT programs 108 can be thought of as a progratreitraditional computer engineering framework.tEac
can be decomposed to increasingly specific compenen

Figure 4 illustrates a typical procedural decomipmsj because in both the result can be decomposed
to increasingly specific tasks. In the traditiofr@mework, program 402 is decomposed into constitue
functional components, or tasks. The "Initializej@ats" 404, "Input Data" 406, "Do Calculations" 4@8d
"Output Data" 410 tasks are independent functigasks that, together, comprise program 402. The
functional components interact through data objeEsch functional component (404-410) is itself
decomposed to those functional tasks that comjitrigeor example, the "Do Calculations" 408 task is
decomposed to "Perform Analysis" 412 and "Continest" 414 subtasks. The decomposition continues to
a point where the designer/developer is satisfiatl source code can be developed. The tasks déveis
are called "terminal" tasks, because they aremth&wr decomposed. In the software development task,
intermediate tasks, such as "Do Calculations" 48& used to organize the functions of their
subcomponents, and their effects are otherwisee®i. Terminal tasks implement the actual funcligna
of program 402.

Once a procedural decomposition is designed, a@nogan be implemented without developing any
of the terminal functionality. A problem that oftarises in software design and development isstheency
for developers to develop the terminal functiowaliithout first implementing the supporting frameko
depicted by program structure 400. This problenanslogous to developing BOT topics without a
supporting content framework. The difference ig tine BOT can still function, though its functios i
severely hampered, whereas a program cannot. Sefemgineering has a tool, called a function stiod,
enables the developer to implement the frameworgrofram 402 without implementing the terminal
functionality. The stub is a structure that adhéoebe input/output requirements of program 4@&sign,
but implements none of the functionality. For imediate tasks, stubs comprise the appropriateiumct
calls to subcomponent tasks. Using this approdehsoftware developer can implement a large program
without implementing any of the functionality, atiten replace the empty stubs with the actual cbde t
implements the design algorithms for a particudakt

The art described herein conceptually makes usthehierarchical/procedural decomposition and
function stub to develop a BOT that has an orgaiizal structure and is developed around a hiereath
framework of defaults. The analog to program 4®2’&tional component is called a "domain". The agal
to program 402’'s functional decomposition is a eahtdecomposition called a domain "hierarchy." The
analog to the function stub is the "domain defalegardless of the user’s query, or the degretept
development, the BOT developed with a domain héfraand domain defaults can answer the user and
even direct the user toward what they seek.

C.HIERARCHICAL DECOMPOSITION OF THE UNIVERSE OF DISCOURSE

Every universe of discourse can be described aswping of different content components that can be

hierarchically decomposed. Using a virtual robofptovide information about a particular universe of
discourse, one must understand how that univedecismposed and design the robot around the at=tcia
hierarchy.

Figure 5 depicts a domain hierarchy for "Compan§2.5The decomposition represents the sum total
of all information about the company, which is depwsed into four informational and functional
components, "Information" 504, "Products” 506, &mgs" 508, and "Sales" 510. The "Products"
component 506 is shown further decomposed intethamponents, "Widgets" 512, "Flingys" 514, and
"Gadgets" 516. The pictured decomposition is typibat unimportant. What is important is that the
combination of components completely describesotfganization, analogous to the relationship of the
functional components (404-412) and program 4(Riguire 4.

Each component 502-516 in hierarchy 500 is call&tbanain." A domain represents an informational
aspect of the organization. This type of hierarshgalled a "component" hierarchy, in that the domma
under the top, or "root," domain (i.e., domain 5@2¢ considered components of domain 502. Thus,
“Information” 504 is a component of “Company” 50the reverse is not true (i.e., “Company" 502 is not
a component of “Information” 504). A terminal dom&s one which has no subdomains. Just as a prégram
functionality is implemented in its terminal comporis, BOT 100s specific content is implementedsn i
terminal domains. The overall hierarchical deconitjms500 is called a domain "hierarchy."

D. DOMAIN TOPICS

The domain analog to the function stub is a meamarihat allows BOT 100 to respond in lieu of topic
development associated with a terminal domain. démain stub is effectively a default response to a
query. It is thus referred to as a domain default.

Figure 6 illustrates the universe of discourse R3BOT 100 when it is developed using a domain
hierarchy and domain defaults (i.e., stubs), asoepp to the largely vacant universe of discourde 30
depicted in Figure 3. The universe of discoursei8dtbw completely divided into non-overlappingase
602 that represent the domains in hierarchy 5@ fiypes of queries can be made to BOT 100 indfeu
terminal topic development: (1) relevant and unifeor (2) irrelevant. A "relevant” query is oméhich
hits a domain in the universe of discourse (i.a@pmain in the hierarchy). A "specific" query iseothat
would hit a terminal domain topic. Thus a releviant unspecific query should hit an intermediate divm
in the hierarchy. An "irrelevant" query is one whimisses the domain associated with the currenisfot
attention or, in the worst case, the universe séalirse (i.e., hits no domains in the hierarchgsjite the
fact that no topics are shown in Figure 6, BOT 400 respond in a coherent manner to relevant but
unspecific queries as well as irrelevant queries.

Figure 7 illustrates that topics 302 could be depet! for any terminal domain, in any order, onae th
domain hierarchy and its defaults are in place.

The analogy to a program decomposition and a fandtub breaks down with a virtual robot in three

ways: (1) the user/program interaction is differdwatn a user/BOT interaction, (2) the relationgigpveen
program components is different than the relatigmbbtween hierarchy domains, and (3) the funciioip
responds differently than the domain default. fpregram, a user has very specific points wheretirgu
allowed, and very specific points were output isduced, whereas BOT user 116 could possibly interac
with BOT 100 at any domain as mentioned above. k\egg the program user would have no use for output
at intermediate points, since all that is necessatlye functional implementation at component ieais.

The domains in a virtual bot hierarchy are alwajated by content, so every domain from root dorb@ix

to a particular terminal domain can provide a \eéatégree of content for the terminal domain. Assaut,

a query directed at "Widgets" 512, if made in ausagvay, could be responded to by "Products” 506, or
even "Company" 502. Finally, the function stub msge may or may not have a value, but the domain
default always has a language response.

For example, if the terminal domain is "Widgets25then domain "stubs" are required for each of the
"Company" 502, "Products" 506, and "Widgets" 512ndmns, because user 116 could make a query
regarding "Widgets" 512 that could hit domain défat either "Products” 506 or "Company" 502,
depending on the degree query specificity. Anyheffollowing queries/comments could be issued ley us
116 with respect to widgets:

Q1 - "Do you have any widgets?"

Q2 - "What kind of widgets do you have?"
Q3 - "Widgets"

Q4 - "What products do you have?"

Q5 - "What do you have?"

Q6 - "Do penguins live here?"

The so-called domain "stubs”, or "defaults”, couddpond to these queries without any specific
information regarding widgets being developed. Stedponses would look like the following:

Q1 - "Do you have any widgets?"

Al - "Yes, we have a number of widgets, would yika to see a listing, would you like informationcaib a
particular type of widget, or would you like to seer inventory?"

Q2 - "What kind of widgets do you have?"

A2 - "We have red, green and blue widgets. Would ljke a feature comparison chart or informatiooutb
a particular model?"

Q3 - "Widgets"

A3 - "Widgets are one of our products. They aredusemany industrial applications. We also manufeet
and sell flingys and gadgets."”

Q4 - "What products do you have?"

A4 - "We manufacture and sell widgets, flingys, ajadigets. Would you like to know more about any of
these, or are you interested in our inventory of @fthem."

Q5 - "What do you do?"

A5 - "l am glad you asked that. We are a small nfecturing company. We design and build the besgwid
ets, flingys and gadgets money can buy. Would ijk@rhore information on a particular product?"

Q6 - "Do penguins live here?"
A6 - "I'm sory, | do not understand what you medferen’t we just talking about our company’s prod@ct

10

Notice that all of the queries are a bit unspegditd that there are different types of responséiset
different types of queries. In query Q1, it is wwarl whether user 116 is seeking information abdtier
the organization produces widgets, what kind ofgeid, or whether user 116 wants to know how maay ar
in stock. The answer must be a combination of wiwatld be at a terminal domain and information aietdi
from the "Sales" 510 domain. In query Q2, the retjigereally for an enumeration of widget typeg, ibis
vague because what the user wants to know abogewgds unspecified. The response should provitie bo
the information requested and provide options feming that information. Query Q3 only mentions the
term "Widgets" itself, and so BOT 100 can only assuhat user 116 seeks to know more about widgets,
or maybe what role they play in the organizationefy Q4 is more general, in that it refers to afthe
products this company has. The response is, agairgnumeration of product types, and should look
similiar to the answer to query Q1. Query Q5 igaxiely general, but the response still enables 1iser
to provide a new query the will advance closerhe widget information sought. Finally, query 6 is
irrelevant to the current conversation. The respai®ws that BOT 100 is confused, but also attetopts
help user 116 by reminding user 116 about the pusviopic of conversation.

Domain Family Relationshipsand Topic Types

A function stub may return O or more different abjgalues. Similarly, there is variety in the typss
default responses BOT 100 can make. Unlike thetfoim stub, the robot can only say one thing ane t
Thus there is a need to have more than one tydefafilt associated with each domain. The number and
type of domain defaults is based on the concejméaimational relationships a domain has in the diom
hierarchy.

Figure 8 illustrates the family relationships foet"Products” 506 domain. There are three kinds of
relationships with respect to a domain: (1) it hasngle parent 802, (2) it has perhaps many gbl804,
and (3) it has perhaps many children 808. A donsgiarent represents the more abstract domain ahwhi
domain 806 is a component. The parent 802 to doB@#bris represented in Figure 8 with "Company"” 502.
A domain’s siblings share the same parent, andehthiesame level of abstraction, with the domaitién
hierarchy. A sibling 804 to domain 806 is represdrih Figure 8 with "Information” 504. The connecti
between domain 806, its parent 802, and its chl8 B shown with a solid line owing to the direct
relationships between them. The connection betwleaemain 806 and sibling 804 is shown as a dotte lin
because there is no direct connection betweenvibe Their relationship exists because they are both
components of parent 802. The other sibling domaimdd be "Services" 508 and "Sales" 510. A dongin’
children constitute the information categories tbamnprise the domain, as components. A child 808 of
domain 806 is represented in Figure 8 with "Flingy®4. The other children of domain 806 are "Wid{et
512 and "Gadgets" 516.

Domain family relationships are important in BOTOIecause they are directly associated with types
of queries and responses that can be made on airdofeere are three query/response types directly
associated with family relationships. A child queegponse is associated with queries that areaetdo
universe of discourse 300, unspecific, and basedamnain 806’s subcomponents. Queries Q2 and Q4
represent child queries, because the request enfameration of domain 806’s children. A siblingegu
response is associated with queries that are mlévainiverse of discourse 300, unspecific, argbtan
the domain 806’s definition or relationship tosiblings. Query Q3 represents a sibling query sihaely
mentions the domain. The response talks about thbatomain ("Widgets" 512) means and how it relates

11

to parent 802 with respect to its siblings. A parguery/response is associated with queries that ar
irrelevant to the previous query domain 806. Tyiycavhen a query hits a domain topic, the focus of
attention is set on that domain. When user 116 sgliery Q6 after having made query Q5, the focastis
on the domain topic that provided the Q5 resporsenamely "Products” 506. Since query Q6 is irratdv

to "Products" 506, the response informs user 186 BOT 100 is confused. In addition, the response
reminds user 116 what the last domain was, anghitsnt ("Company" 502, parent 802), so as to hedp t
user clarify the next query. Since the family quesgponse types provide information about the lonaif
domain 806 in domain hierarchy 500, they can bal s a navigational aid for assisting user 116 in
clarifying requests to BOT 100. This mechanisnstbatisfies one of the requirements of BOT 100gtesi

Figure 9 illustrates that family components and ifgrelated query/answer types are implemented
with three independent domain defaults. The chééadlt 902 focuses on domain children. The sibling
default 904 focuses on the domain siblings. Thematefault 904 focuses on the domain parent. Teget
the child, sibling, and parent defaults comprise ttomain defaults. Domain defaults are typically
implemented as standard topics, and so in bot dpu@nt they are called domain topics.

Domain topics (i.e., defaults) have an order otpdence based on the desire to ‘move’ user 116rclos
to a domain terminal, in which a standard topic lsamsed to fulfill their needs. Child 902 and isigl904
topics respond to relevent (i.e., in universe stdurse 300) utterances, so they have a higheegeace
than parent topics 906, which respond to irreleustierances. Child topics 902 preferred over siplopics
904 because they point downward, by talking aboutain children 808. These are most likely to bexdsk
and most likely to provide user 116 with appropriguidance. Sibling topics 904 are the next most
preferred, because they are still relevant, ang ik about domain siblings 804. Parent topics &@6the
least preferred, and point to the parent domain 882vill be disclosed below, the typical implemetian
mechanism will cause the domain topics to be exekcit a way that maintains this precedence ordering

(11 BOT IMPLEMENTATION

The operating environment that hosts the currertagiiment of the present invention uses Neurostwipt
implement BOT programs 108 and Neuroserver to implg BOT processor 100. It will appreciated by
those skilled in the art that implementations & ¢rrent invention need not be made using Neupisar
Neuroserver, and that other computational mechanisould be employed. Domain hierarchy 500 is
implemented with a file structure that mirrors tt@mains of hierarchy 500. This is typically donedase

of organization and maintanence purposes. Evenaitoim the hierarchy represents a directory bystdrae
name in the file system. Both default and non-détapics are implemented in files. Domain (i.eefallt)
topics are implemented in a file in the domain-nafinectory. Non-default topics are implemented filea

in domain terminals. Thus domain terminals have fites, one each for default and non-default topics
Domain (i.e., default) topics are implemented wiguroscript using standard topics 220. Standari¢gop
are also used to implement non-default responses ®esult, computational mechanisms are requiared t
distinguish and select between the two topic typesee such mechanisms, focus of attention, spayifi
and recency, have already been described. Tertapis will be more specific than any domain topics
Domains that are deeper in the hierarchy will beergpecific than domains higher in the hierarchy. |
addition, as will be disclosed below, child topiesl be more specific than sibling topics, whichliide
more specific than parent topics. These mechartisussvork in concert to satisfy the requirement8OfT
development. Below is a description of the impletagans of the child 902, sibling 904, and paredé 9

12

domain topics, followed by a description of implertsgion mechanisms used to maintain domain
hierarchies.

A.CHILD TOPICS

Child topics 902 are triggered by description at flaased queries to BOT 100. For example, if udér 1
makes query Q7, BOT 100 recognizes it as a degmriguestion, in that it basically asks for a dggimn

of what is available. Description questions canegelty be answered with an enumeration. If user 116
makes query Q8, BOT 100 recognizes it as a faquestion. Factual questions can generally be amslver
yes or no, but the response to query Q8 must liefasboth query types, so the yes answer is intphther
than explicit.

Q7 - "What educational programs do you have

A7 - "We have an employee reimbursement prograrddégree programs. We also have in-house training fo
non-degree certification programs."

Q8 - "Do you have an employee reimbursement progfdm

A8 - "We have an employee reimbursement prograrddégree programs. We also have in-house training fo
non-degree certification programs."

In Neuroscript, fact and description question typage parsed using ?FactQuestion and
?DescriptionQuestion, respectively. In queries @@ @8 the child topic 902 responds. In both cabes,
guestion is unspecific, because user 116 doegiabgtask for information on a specific program, &o
terminal standard topic cannot respond. But BOT dfi® help user 116 out, by elaborating what kirfds o
educational programs the company has. User 118®arclarify their request, and BOT 100 doesn’t look
stupid. The following is an example illustratingetNeuroscript for an "Education” child topic thadwid
respond to queries such as Q7 and Q8:

Topi ¢ "Random description or fact question about Education" is
Subj ects "Education”;
If (?DescriptionQuestion contains DOM EDUCATI ON) or
(?Fact Questi on contai ns DOM _EDUCATI ON)

Then
SayToConsol e "Trace -- Education, A answer";
Exanpl e "what ki nd of ducks swimin Education pool ?";
Say "Tal k about Education and, in particular, " +
"with respect to the children: Science Engi neering Business"
Done
EndTopi ¢

The specificity of the topic is based on the coreHirspecificity of ?DescriptionQuestion and
?FactQuestion. Note that the subject of the tdfiducation", is the same as the domain 806 name. Th
pattern list (as described in the background setidOM_EDUCATION, is initially implemented with a
single element by the name of domain 806. DuringTBIDO development, DOM_EDUCATION is
extended to include synonyms for education, sucttraming.” Domain pattern lists must be carefully
implemented so that domains don't clash, sincehelsseduce the ability of BOT 100 to answer queries

with the correct domain topic.

13

14

B. SIBLING TOPICS

Sibling topics 904 are triggered by direct refebased queries to BOT 100. For example, if usér 11
makes a query such as Q9 or Q10, BOT 100 recogitiass direct reference to domain 806 and respond
in two ways: (1) pseudo definition, and (2) infotioa about siblings, as exemplified by the respaiese
queries Q9 and Q10.

Q9 - "Education

A9 - "We have degree and certification educatigagnagrams here. We also have stock participatioaltine
insurance, paid holidays and retirement benefitefoployees."

Q10 - "Does employee education play a role in adearent at your company?"

A10 - "We have degree and certification educatigmagrams here. We also have stock participatiealth
insurance, paid holidays and retirement benefitefoployees."

The idea of the sibling topic 904 is that user h&6 mentioned domain 806 by nhame. In some cases, as
in query Q9, perhaps only the domain name is peaVid the query. In other cases, such as in quéf; Q
the query may be complex, but the only thing recxasie by BOT 100 is the direct reference. BOT 100
cannot be expected to direct user 116 downwardwbat it can do is provide a little information aibo
domain 806, and to provide user 116 with some médion about how domain 806 fits into the parent
domain 802 by talking about its sibling domains .8DHe response to query Q9 indicates that, if Ggér
is confused, providing some information about hauaation fits into the company’s benefits programs
might help them to restate their query with greatarity. Also notice, in the response to query hat a
direct reference can lead to inappropriate resgonse

Topi c "User nmentions Education, by itself" is
Subj ects "Education";
I f Heard DOM_EDUCATI ON

t hen
Exanpl e "Education”;
SayToConsol e "trace -- Education, B answer";
Say "We have educational support for enployees wishing to, " +
"further their professional growh in degree-granting " +
"prograns. W also have training prograns that lead to " +
"certification rather than degree objectives."
Done
EndTopi ¢

Once again, it is clear from the Neuroscript of $itding topic 904 that the domain 806 name is the
subject of the topic. In Neuroscript, direct referes are parsed using the "If Heard" mechanisnthdn
sibling topic, the "If Heard" mechanism is appliedthe domain pattern list, DOM_EDUCATION. "If
Heard" is also less specific than either "?Desiony@puestion” or "?FactQuestion", so the siblingicap
less likely to be selected than the child topid, being more general, it is more likely to matcrekevant
utterance.

15

C. PARENT TOPICS

Parent topics 906 are triggered by queries to BOQ that have nothing to do with the current foctis o
attention. For example, if user 116 previously madgiery about education, then education is cuyrére
focus of attention. If user 116 then makes a qsach as Q11, BOT 100 recognizes that the subjebieof
query isn’'t education, and so is irrelevant. Whes query is irrelevant, the parent topic 906 redppas
shown in the response to query Q11 below:

Q11 - 'Can | paraglide off the cliff in your back yard?

Al11 - "l am confused, what you have said is eitbercomplicated for me to understand, or | canretthe
relationship to our last topic, which was Educatiorservices."

There are any number of possibilities of why usks’d current query is unrecognizable, and BOT 100
simply isn’t smart enough to decide what to do.slish, parent topic 906 tells user 116 that it dbesn
understand what the user said, and reminds usethhiéhe last topic of conversation was aboutesrr
domain 806, but focuses the discussion on the pdmmain 802.

Topic "We are baffled, but the last topic was Education" is
Subj ects "Education";

| f Focused
Then
SayToConsol e "Trace -- Education, C response"
When Focused Exanple "Do you go sl edding on w nter nornings?"
Say "I am confused, what you have said is either too conplicated " +
"for me to understand, or | cannot see the relationship to " +

"our |last topic, which was Education or Services."
Focus Subjects "Services";
Done
EndTopi ¢

In this final example, it is seen that domain 8@éne is again the topic subject, though it is n@érn
associated with the test or the example. Domaini8@&ain referenced in the response, along with th
parent domain 802, but the parent domain 802 is@dal the focus list. In cases of non-relevanceh s1s
query Q11 above, it is important to show user haBOT 100 isn’t giving up on them, and so theckiag
up" response is viable.

Domain topics perform the same task for every dard&i6 in domain hierarchy 500, so the structure
of the each of the three domain topics is idengoalept that the domain 806 name changes from topic
topic. In the current implementation of the art,itmative process is used for creating and maiingi
domain topics.

D. DOMAIN INTERACTIONS

16

The connectivity in a domain hierarchy 500 resintster-domain interactions which affect domaipito
content. Two such interactions are important ten() changes to the number of domains 806 iratday
500, and (2) interactions between the domain 8@6asaacross major branches of hierarchy 500.

Domain Hierarchy Content Changes

The structure of domain hierarchy 500 imposes reguénts on the content of domain topics when family
members change. The normal development of BOTs#@6 three types of change: (1) add domain 806 to
hierarchy 500, (2) remove domain 806 from hierars@§, and (3) cauterize domain 806 in hierarchy. 500
In the first two cases, the number of componentieuparent 802 changes, and this changes thetopild

902 and sibling topic 904 say statements. For exanip Figure 5, if two new domains are added under
"Services" 508, called "Education” and "Trainintiien the child topic 902 for Services domain 50&mu
be edited to include the "Education" and "Trainiigmains. In addition, the "Education” domain sili
topic 904 has to be edited to include the "Traihibgmain, and vice versa.

Domain Cauterization

Two scenarios exist wherein domain hierarchy 500niable to provide accurate support in universe of
discourse 300. The first scenario is when BOT adbtrator 122 chooses to restrict the universe of
discourse with respect to a more generic domaimariby. For example, in hierarchy 500, BOT
administrator 122 may choose to disable the dordaiiaults for the "Services" 508 domain without
changing the structure of hierarchy 500. The sesmedario is when BOT administrator 122 chooses not
to restrict the universe of discourse, but theda@velopment for a domain subtree (all domainsvbel
particular domain) is incomplete. Using the samengple above, during BOT 100 testing, perhaps sdme o
the non-default topics under "Services" 508 areonmglete, so rather than have BOT 100 respond
incoherently, BOT administrator 122 again disaltihessubtree.

Figure 10 depicts a "cauterization", which is tipemtion performed in both scenarios. A cautedrati
recursively replaces the domain topic say statesneith a single statement that refers back to tiue r
domain in the cauterization. In this example, theterization subtree is shown as a shadowed tgang|

Figure 11 shows that each domain topic inside tealewed triangle refers back to the "Products”
domain. "Products" domain 506 is being cauterizedit is called the "cauterization root" domain.eTh
cauterization say statement is basically the samegich topic type inside the triangle, and willllustrated
with a child topic 902 for the "Widgets" 512 domain

Topi ¢ "Random description or fact question about Wdgets" is
Subj ects "W dgets";
If (?DescriptionQuestion contains DOM W DGETS) or
(?Fact Questi on contai ns DOM W DGETS)
Then

17

SayToConsol e "Trace -- Wdgets, A answer";
Exanpl e "what ki nd of ducks swimin Wdgets pool ?"
Say "I'm not trained to talk about Products at this " +
"time, sorry.";
Done
EndTopi ¢

Regardless of which domain topic in the cauter@atioot’'s subtree matches user 116’s query, the
response should be the same. They all point badRraxucts" 506.

Figure 12 depicts domain 806’s family members #nataffected by a cauterization. When one or more
of many child domains 806 under a parent 802 isecened, then the parent topic 906 must be modifed
remove the domain names from the child topic 90@, ® remove the domain name as a sibling in the
sibling topic 904. In the current implementationtbé art, domain cauterization can automatically be
performed, reversed, and reperformed using a diftecauterization root domain, over an over again,
without adversely affecting the coherence and ooit of the hierarchy.

Domain Tiebreakers

There is a certain degree of redundancy in any-gkedigned domain hierarchy. Many instances cae aris
in the development of hierarchy 500 where domapictsubjects and pattern lists in different hiehgrc
branches "clash," meaning that they will contaie on more of the same values. In Neuroscript, onky
topic can respond at a time, so only one of perlmpry clashing topics will have its say statement
executed. In cases where domain clashes are igelntfOT 100 should be designed to implement what i
termed in the art as a "tiebreaker." The tiebrea&directs control to a sequence topic 240. Theemoe
topic directs user 116 to select from the differgubjects possible, the content for which comesn ftioe
say statements of the affected topics.

Figure 13 illustrates an example tiebreaker scenatween two domains relating to "Sales," one of
which is a component of the "Information" subtredjle the other is a component in the "Sales" sgbtr
In each case the meaning of "Sales" is slightlfedint, but BOT 100 would match on the word “sales”
and so "sales" would be a member of each of thenpdists for topics in these domains. The sege¢gic
informs user 116 that BOT 100 knows about “Salesd number of contexts, and asks user 116 to select
one and continue. This way, it becomes clear ti@&f B0O recognizes that user 116 is making a general
query but perhaps isn't aware that the query carepgonded to in different ways. The sequence tigpic
intended to help user 116 obtain an answer to tlegygwithout making assumptions as to which of the
domains the query references. The say statemettis iiebreaker are typically copied from the claitdd
sibling domain topics (902 and 904) directly, thbubey need not be. The following Neuroscript shows
how the domain tiebreaker for a child topic is ierpknted.

Topic "Tiebreaker A for PatternlList SALES" is
Subj ects "Information Sal es", "Conpany Sal es";
I f Heard "sal e#"

18

Then
Swi tchTo "Sequence Ti ebreaker A for PatternList Sales"
Done
EndTopi ¢

Sequence Topic "Sequence Ti ebreaker A for PatternList Sales" is
Al ways
SayToConsol e "Trace -- Sal es Ti ebreaker, A sequence answer";
Say "I know about <I>Information</I> Sales and <l >Conpany</I|> " +
"Sal es. Wiich would you like to know nore about ?"

Wi t For Response;
I f Heard DOM_| NFORMATI ON

Then
SayToConsol e "Trace -- Sal es Ti ebreaker, A information answer"”;
Say "I can tell you about what our overall sales were, what our " +

"sal es per product type were, and what our sales for " +
"particul ar products were.";
Focus Subj ects "FlI NANCI ALSALES"

Done
| f Heard OUTREACH
Then
SayToConsol e "Trace -- Sal es Ti ebreaker, A outreach answer";
Say "I can tell you about things |ike how our sal es departnent " +

"wor ks, and what they have in mnd for the future.";
Focus Subj ects "OUTREACHSALES";

Done

O herwi se Al ways

SayToConsol e "Trace -- Sal es Ti ebreaker, A otherw se always answer";

Say "I thought we were tal ki ng about sales, but anyway..."
I nt errupt Sequence;

Done

Swi t chBack
EndTopi ¢

The first thing to notice in the tiebreaker is thatlways has multiple subjects, whereas in otbpics
it is possible, but not necessary, to have multflbjects. Second, the recognition mechanism fer th
tiebreaker is an "If Heard" mechanism. If executaahtrol is switched to the sequence topic. Theisege
topic requests user 116 to select between thelasbiog subjects and waits for user 116’s respdhaser
116 selects one of the pattern lists, then theorespis taken from the associated domain’s topiod that
domain’s subject is focuses. If neither of the grattlists is heard, then a tiebreaker defaultdadd as a
response and the sequence is terminated.

V. THE PROCESSOF IMPLEMENTING A HIERARCHY-BASED BOT

1. Create a hierarchical description of the orgaiunsbeing modeled
2. Create a file system architecture that mirroesdbmain hierarchy
3. Create domain topics for the hierarchy

4. Create domain pattern lists for the hierarchy

5. Perform any necessary cauterizations

6. Create any necessary tiebreakers

7. Proceed with standard topic development in dorteaiminals

8. Develop standard topic pattern lists

9. Cauterize/uncauterize as necessary
CLAIMS

1.

2.

3.

4.

5.

ABSTRACT 57

19

BACKGROUND OF THE ART

Understanding and processing natural languagethas spoken or written by humans, has long begoeh
in the field of artificial intelligence. As compars have been programmed of late to perform awgring
feats, such as defeating the world’s best humasschmaster in his game, other skills exhibited byios
are still seemingly beyond the reach of even thetmpowerful computers. Although a small child may n
be able to play chess, that child typically has fdmlity to process and understand its native teng
Computers, on the other hand, have yet to exhilyitsagnificant level of mastery in the realm of uvat
language processing.

One attempt at simulating natural language skdlshie virtual robot, or BOT. A BOT may use a
scripting language that matches input sentences &aoser against input templates of keywords. Awitin
template might, for example, take a group of rel&eywords and lump them together for the purpo$es
responding. Thus, words like “father, mother, beut sister” might be grouped together for a respdhat
relied on the concept of “family”. In addition tecognizing familiar words, a scripting languageatae
of recognizing the ways these words are used irsémence, and of tracking context across sentences
enables an associated processing model to trackeapdnd to a wide variety of utterances. Genertily
process model that makes use of a scripting largudig have a default response if none of the keylvo
templates matches the input sentence. Thus thed@@dys has a response.

Script programs may be written by human designavinlg little or no formal programming experience.
For the purposes of the discussion, some charsiitsriof a scripting language are described in Back
Normal form below. There are 4 characteristics gtapting language of interest in this discussidn:
topics, (2) subjects, (3) conditions, and (4) pattests. A topic is used to process user stateésnen

Topic <string> is
<Tst at enent >*
EndTopi ¢

There are three types of topics for the purposethisfdiscussion: standard, default, and sequence.
Standard topics are used to recognize and respartterances. If more than one standard topic neatah
utterance, then computational mechanisms can bé tos@rioritize and then select one to apply in
constructing a response. Two such mechanisms adifisfiy, which is based on the information cortten
in the utterance, and recency, which is based dohadubject most recently uttered is associatet wit
topic. Because standard topics are used to respontterances, they are executed first. Defaulic®p
respond when standard topics cannot respond. Hnersvo types of default topics. One default tappe
is associated with a standard topic, so it is eelad the subject of the standard topic. Anoth&udetopic
type is a universal default, sometimes called st'llae of defense", which will respond in the evirat no
other standard or default topic can respond. Defapics are tested in the order in which they appethe
program and the first applicable default is useluitd the response. Sequence topics are useddgmze
and respond to utterance sequences when the wi#srare connected by how the user responds. Sexjuenc
topics are executed only when explicitly accessea $witchTo statement, which is a form of redimett
Sequence topics have the lowest priority of thedhopic types described.

The body of each topic is a list of conditionaldds. These conditional blocks are executed imtber
found in the topic. If the condition of a condita block is false, execution goes on to the nertdional
block in the topic, or to the next topic if theme ao further conditional blocks. If the conditiisrtrue, the
commands and conditional blocks inside the bloekeatecuted, and further behavior of the program is
dependent on the keyword which ends the conditibleadk. If it ends with Done, execution ceaseslunt
the next input occurs. If it ends with Continugeeution continues with the next conditional blackhe
topic, or the next topic if there are no furthenditional blocks. If it ends with NextTopic, thest of the
current topic is skipped and execution continudh ttie next topic.

<Subj ect Li st> = Subjects <string> [, <string>]*;

The top level of a topic may contain one or mor&j8tts statements. Each asserts that the given
subjects are subjects of the topic. If a non-Ife@nd within the body of the topic is executedi@lics
which share at least one Subject with the topidaneght to the front of the "focus of attentioRdcus of
attention generally refers those things a persauisently thinking of. In this context, topics simg a
subject match part of what the user uttered andised as the first sorting mechanism for topicctele.

<Condition> = |If <conditionpatlist> Then |
| f Heard <patlist> Then |
| f Heard <pat> [and <pat>]* [and not <pat>]* |
| fRecall <memist> Then |
| fRecall <menref> [and <nenmref>]* [and not <menref>]* |
| f Dont Recal | <neml i st> Then |
| f Dont Recal | <menref> [and <menref>]* |
| f Chance <chance> Then |
| f Chance Then |
Al ways

<patlist> = <pat> [, <pat>]* | <synbol >

A pattern list is anything that evaluates to adisstrings. It can be either the name of a Paitiist
object or a list of patterns separated by commas.

A virtual robot generally embodies a particularuemse of discourse reflective of the subject maifer
interest -- e.g. a BOT developed to converse apetgonal computers should "know" something about
computers and their peripherals. The developmémstuoh a BOT employs the scripting language to
recognize aspects of the subject matter and respithc@ppropriate content. Often these "script paogs"

(or scripts) are written in an action-response tgfyée wherein the actual language supplied byuther
embodies an "action" to which the "response" igteuiinto the script program itself.

Scripts are generally written by a "BOT adminisirat(human or otherwise) by defining a list of
“categories” in which the BOT will be well converda Categories may comprise "topics" that are
recognizable by a runtime executive. Topics, imtunay comprise patterns or words that are matched
against the stream of input communication (in eitkgoken or written or any other suitable form of
communication) from the user.

The main drawback with constructing virtual BOTséabljst of categories is that the topics developed
cannot provide complete coverage of all subjecthénuniverse of discourse. The result is thatBoa
responds with the universal default. Such respossesonsidered "misses”, because the BOT demtesstra
"holes" in its knowledge of the universe of dis@miwhen it is forced to respond with the defaultekated
drawback is that the universal default responseigdiy provides insufficient guidance to the usena
their original input: it doesn't provide informatiaregarding why the input "confused" the BOT, and i
doesn’t provide a knowledgeable response to thatinp

The BOT development task must recognize that thed l&f quality and value evidenced by users is not
judged merely in discrete terms, but rather byotherall impression that they get from their intéi@e with
the BOT and by their level of satisfaction with théormation the BOT provides.

Thus, there is a need in the art to have a meansafly designing and creating virtual BOTs that
enables the BOT to effectively respond to arbitratgrances with knowledge regardless of the nuraber
topics implemented, guides the user toward progiditterances that will move the user closer to the
information they seek, provides the user with infation about what in the user’s utterance confiised
bot when that occurs, and performs these tasksinwéhframework the eases the maintanence and
entendability of the BOT’s capabilities.

SUMMARY OF THE INVENTION

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts a suitable operating environment for thigpses of the present invention.

Figure 2 depicts the topic types used to present a typgalementation of the present invention.

Figure 3 depicts developed topics in a universe of disaurs

Figure 4 depicts a procedural decomposition of a programits computational subtasks.

Figure5 depicts a collection of conceptual domains whiebatibe a universe of discourse.

Figure 6 depicts a uniform distribution of defaults in d@uerse of discourse.

Figure 7 depicts a set of developed topics in a unifornritistion of defaults.

Figure 8 expands the family view of a conceptual domaiskasvn in Figure 5.

Figure 9 depicts domain topics for the conceptual domaifoasd in Figure 8.

Figure 10 depicts the cauterization problem.

Figure 11 depicts the cauterization solution for a domaatiddren.

Figure 12 depicts the cauterization solution for a domapdsent and siblings.

Figure 13 depicts the tiebreaker problem.

DETAILED DESCRIPTION OF THE INVENTION

I. OVERVIEW AND GENERAL ARCHITECTURE

The term “robot” is used interchangably with “BOffroughout the remainder of this writeup. For the
purposes of this writeup, both “BOT” and “robotfeeto any program which interacts with a humarruse
in some fashion, and should not be assumed to wmflr to physically embodied robots. The term
"supervisor" is used interchangably with "admiragr'. The term "domain" is used to represent ayludd
knowledge that comprises a component of a universescourse that the "BOT" will be conversant with
The term "hierarchy" will be used to describe tlodlection of domains that represents the univefse o
discourse that the "BOT" will be designed to coseeabout. It should be noted that the term hieyarch
should not be construed to mean the collection tgita. Many means of representing the collectian ar
known to those skilled in the art, and the funciidy of the collection is not dependent on theadgpe
used to implement it.

Referring now to Figure 1, the operating environtiiemvhich the present invention applies is depicte
The environment can be characterized generallytme partitions: front end 102; BOT processor; 100
and back end 104. Front end 102 is generallyrti@@ment in which a human user 116 consultsta&ir
BOT interface 114 via a computer 112 that may beeoted to the BOT processor via a communications
link, such as through a server connected to theeret or alternatively directly connected to BO®gassor
100. It will be appreciated that many other mezfronnection to a BOT processor 100 are well kneawn
those skilled in the art and that the present itisarshould not be limited to any particular aspetftthe
general operating environment as disclosed herein.

Typically, human user 116 connects to a site whinsface of first impression is a virtual BOT
interface 114. The advantage for the site develigodat human user 116 may have a help or infiama

request that is easily handled via BOT interfacé. 1Today, it is not uncommon to find sites havénlist

of FAQs ("Frequently Asked Questions") that sehie purpose of handling very low level user consern
and questions. However, for more advanced questiorinteractions with the site, virtual BOTs will
become increasing popular.

In the operating environment that hosts the embedtrof the present invention, BOT interface 114 is
an instantiation of a process that is spawned by B@cessor 100 via connection 110. BOT proces30r
itself may comprise connection 110; runtime exe®ufprocess 106, compiler 107, and a set of BOT
programs 108. As users 116 log onto a site haB@®J processor 100 via connection 110, runtime
executive 106 executes an interaction routine ghades the discussion that occurs between useaid 6
BOT processor 100. Typically, a two way communaa dialogue occurs between user 116 and BOT
processor 100 wherein user 116 may ask questioake ndeclarative statements and other normal
communications patterns that humans typify. Ferthrposes of the present invention, “communication
is to be very broadly interpreted. Indeed, sugalmmmunications could be in the form of writterspoken
language, graphics, URL’s or the like that may bssed to and from a user to an automatic interface
program, such as the present invention.

In turn, runtime executive 106 parses the statesnemdl questions generated by the user and responds
according to a set of BOT programs 108. As willdigcussed in greater detail, BOT programs 108 are
typically created at the back end 104 as a sedafpts" that the BOT processor will tend to engiageith
user 116. For example, if the site using BOT pssoe 100 is a site for a reseller of personal cderpu
then BOT processor 100 should be designed to haqeistions and discussions concerning personal
computers and their peripherals in general. Tthesback end 104 will generate scripts that wiltlguthe
discussion concerning many computer-related topitBese script programs 108 are then compiled by
compiler 107 and the compiled code is incorporatéaruntime executive 106.

As the two-way discussions between user 116 antintanexecutive 106 continue, it is generally
desirable to engage in quality control of BOT pssme 100. This quality control is provided at backl
104 via feedback loop comprising a transcript elajues 118 and backtrace and state informatiorol20
the BOT processor 100; a supervisor 122 and edi?dr As transcripts develop over the course of
interacting with a user, the text of these tramsrare stored, together with the state of thameéxecutive
and backtrace of execution through the runtime @tkex code. This information forms the basis for
accurately diagnosing the runtime executive andléougging its performance. Such information may b
stored electronically in a storage media or codgbbinted out in human readable form.

Supervisor 122 analyzes the information at 118 a@6 with an eye towards optimizing the
performance of the runtime executive. Typicallyparvisor 122 could be another human, decidinbdf t
semantics captured by the system needs to be wgmjnadesponse to a dialog transcript that hasroedu
If so, supervisor 122 could optionally invoke aiit@dl124 to edit the programs that represent thesseic
framework of the runtime executive. These programsld then be re-compiled and incorporated in& th
runtime executive.

Although Figure 1 gives a general description afouss operating environments in which virtual BOTs
may exist, it will be appreciated that many othgemting environments are obvious to those skilietie
art and that the scope of the present inventionlshwt be so limited to the exemplary descriptiasgiven

above.

[I.BOT DEVELOPMENT

In general, BOT user 116 knows what kind of infotiora he seeks, but not necessarily how to artieulat
his request. Functionally, the implementation & &t described herein provides user 116 with Hiléy

to interact with BOT 100 on any level of abstrastibrectly associated with the universe of disceuBOT
100 should be able to achieve this either witmglsiresponse to a very specific question that iciately
identifies the users’ needs, or through dialogesponse to a series of increasingly specific gaeyigded
by BOT 100 through the BOT programs 108. The meishais independent of the order in which topics
are developed.

A. CURRENT MECHANISM

As mentioned in the background, BOT programs 108¢capts, are generally written by BOT administrat
122 by defining a list of categories in which BOQO1will be well conversant. These categories gdiyera
come from BOT administrator 122, FAQs, user inpui] other sources associated with the universe of
discourse. BOTs developed this way suffer from pnablems. First, BOT 100’s ability to answer quess

is dependent on the number of topics developed,thedinite number of topics developed by BOT
administrator 122 cannot completely cover all agpe€ the organization associated with the univerfse
discourse. Thus, it is highly likely that queriesde by BOT user 116 will result in "default” respes.
Second, the development of BOT 100 follows speci@eds/interests of administrator 122, rather than
systematic, coherant approach. Thus there is nereobe between the topics or their defaults.

Figure 3 illustrates the problem that arises wh@&irBrograms incompletely cover the universe of
discourse. Universe of discourse 300 is compriséhase topics 302 that have been developed. Exqut t
302 potentially has its own default 304. The conhteas remaining when all topic-related conteaasr
are covered are responded to by universal def@gltshich will be "hit" by all off-topic user quess. Such
responses are considered "misses", because thaB®dnstrates "holes" in its knowledge of the ursger
of discourse when it is forced to respond withfadk. Since the defaults 304 are related to tp& rather
than to each other, or to the universe of discquristing defaults 304 or 306 provides the usehuiitle
information of value that would assist in contingiithe conversation. There is thus an inherant &k
problem in developing BOTS from a list of topicsn& BOT 100 is a conversational agent, its value
derives entirely from how well it interacts withars 116, where the word "well" may be defined i
of knowlege content BOT 100 conveys, its friendisiehow easily it is "confused”, and how much
interaction is required for user 116 to find whasought. If user 116 asks questions that conf@g B0,
then BOT 100 is seen as "stupid" and its valuensrdshed.

The embodiment of the current invention implemeé3@TI 100 by designing a framework of defaults
in such a way that it is impossible for BOT 100b® asked a question that cannot be answered. The
structural foundation for this framework, and theeracting mechanisms associated with it, comphise
art described in the remaining sections.

B. APPLICABLE SOFTWARE DESIGN/DEVELOPMENT TOOLS

BOT programs 108 can be thought of as a progratreitraditional computer engineering framework.tEac
can be decomposed to increasingly specific compenen

Figure 4 illustrates a typical procedural decomipmsj because in both the result can be decomposed
to increasingly specific tasks. In the traditiofr@mework, program 402 is decomposed into constitue
functional components, or tasks. The "Initializej@ats" 404, "Input Data" 406, "Do Calculations" 4@8d
"Output Data" 410 tasks are independent functigasks that, together, comprise program 402. The
functional components interact through data objeEsch functional component (404-410) is itself
decomposed to those functional tasks that comjitrigeor example, the "Do Calculations" 408 task is
decomposed to "Perform Analysis" 412 and "Continest" 414 subtasks. The decomposition continues to
a point where the designer/developer is satisfiatl source code can be developed. The tasks déveis
are called "terminal" tasks, because they aremth&wr decomposed. In the software development task,
intermediate tasks, such as "Do Calculations" 48& used to organize the functions of their
subcomponents, and their effects are otherwisee®i. Terminal tasks implement the actual funcligna
of program 402.

Once a procedural decomposition is designed, a@nogan be implemented without developing any
of the terminal functionality. A problem that oftarises in software design and development isstheency
for developers to develop the terminal functiowaliithout first implementing the supporting frameko
depicted by program structure 400. This problenanslogous to developing BOT topics without a
supporting content framework. The difference ig tine BOT can still function, though its functios i
severely hampered, whereas a program cannot. Sefemgineering has a tool, called a function stiod,
enables the developer to implement the frameworgrofram 402 without implementing the terminal
functionality. The stub is a structure that adhéoebe input/output requirements of program 4@&sign,
but implements none of the functionality. For imediate tasks, stubs comprise the appropriateiumct
calls to subcomponent tasks. Using this approdehsoftware developer can implement a large program
without implementing any of the functionality, atiten replace the empty stubs with the actual cbde t
implements the design algorithms for a particudakt

The art described herein conceptually makes usthehierarchical/procedural decomposition and
function stub to develop a BOT that has an orgaiizal structure and is developed around a hiereath
framework of defaults. The analog to program 4®2’&tional component is called a "domain". The agal
to program 402’'s functional decomposition is a eahtdecomposition called a domain "hierarchy." The
analog to the function stub is the "domain defalegardless of the user’s query, or the degretept
development, the BOT developed with a domain héfraand domain defaults can answer the user and
even direct the user toward what they seek.

C.HIERARCHICAL DECOMPOSITION OF THE UNIVERSE OF DISCOURSE

Every universe of discourse can be described aswping of different content components that can be

hierarchically decomposed. Using a virtual robofptovide information about a particular universe of
discourse, one must understand how that univedecismposed and design the robot around the at=tcia
hierarchy.

Figure 5 depicts a domain hierarchy for "Compan§2.5The decomposition represents the sum total
of all information about the company, which is depwsed into four informational and functional
components, "Information" 504, "Products” 506, &mgs" 508, and "Sales" 510. The "Products"
component 506 is shown further decomposed intethamponents, "Widgets" 512, "Flingys" 514, and
"Gadgets" 516. The pictured decomposition is typibat unimportant. What is important is that the
combination of components completely describesotfganization, analogous to the relationship of the
functional components (404-412) and program 4(Riguire 4.

Each component 502-516 in hierarchy 500 is call&tbanain." A domain represents an informational
aspect of the organization. This type of hierarshgalled a "component" hierarchy, in that the domma
under the top, or "root," domain (i.e., domain 5@2¢ considered components of domain 502. Thus,
“Information” 504 is a component of “Company” 50the reverse is not true (i.e., “Company" 502 is not
a component of “Information” 504). A terminal dom&s one which has no subdomains. Just as a prégram
functionality is implemented in its terminal comporis, BOT 100s specific content is implementedsn i
terminal domains. The overall hierarchical deconitjms500 is called a domain "hierarchy."

D. DOMAIN TOPICS

The domain analog to the function stub is a meamarihat allows BOT 100 to respond in lieu of topic
development associated with a terminal domain. démain stub is effectively a default response to a
query. It is thus referred to as a domain default.

Figure 6 illustrates the universe of discourse R3BOT 100 when it is developed using a domain
hierarchy and domain defaults (i.e., stubs), asoepp to the largely vacant universe of discourde 30
depicted in Figure 3. The universe of discoursei8dtbw completely divided into non-overlappingase
602 that represent the domains in hierarchy 5@ fiypes of queries can be made to BOT 100 indfeu
terminal topic development: (1) relevant and unifeor (2) irrelevant. A "relevant” query is oméhich
hits a domain in the universe of discourse (i.a@pmain in the hierarchy). A "specific" query iseothat
would hit a terminal domain topic. Thus a releviant unspecific query should hit an intermediate divm
in the hierarchy. An "irrelevant" query is one whimisses the domain associated with the currenisfot
attention or, in the worst case, the universe séalirse (i.e., hits no domains in the hierarchgsjite the
fact that no topics are shown in Figure 6, BOT 400 respond in a coherent manner to relevant but
unspecific queries as well as irrelevant queries.

Figure 7 illustrates that topics 302 could be depet! for any terminal domain, in any order, onae th
domain hierarchy and its defaults are in place.

The analogy to a program decomposition and a fandtub breaks down with a virtual robot in three

ways: (1) the user/program interaction is differdwatn a user/BOT interaction, (2) the relationgigpveen
program components is different than the relatigmbbtween hierarchy domains, and (3) the funciioip
responds differently than the domain default. fpregram, a user has very specific points wheretirgu
allowed, and very specific points were output isduced, whereas BOT user 116 could possibly interac
with BOT 100 at any domain as mentioned above. k\egg the program user would have no use for output
at intermediate points, since all that is necessatlye functional implementation at component ieais.

The domains in a virtual bot hierarchy are alwajated by content, so every domain from root dorb@ix

to a particular terminal domain can provide a \eéatégree of content for the terminal domain. Assaut,

a query directed at "Widgets" 512, if made in ausagvay, could be responded to by "Products” 506, or
even "Company" 502. Finally, the function stub msge may or may not have a value, but the domain
default always has a language response.

For example, if the terminal domain is "Widgets25then domain "stubs" are required for each of the
"Company" 502, "Products" 506, and "Widgets" 512ndmns, because user 116 could make a query
regarding "Widgets" 512 that could hit domain défat either "Products” 506 or "Company" 502,
depending on the degree query specificity. Anyheffollowing queries/comments could be issued ley us
116 with respect to widgets:

Q1 - "Do you have any widgets?"

Q2 - "What kind of widgets do you have?"
Q3 - "Widgets"

Q4 - "What products do you have?"

Q5 - "What do you have?"

Q6 - "Do penguins live here?"

The so-called domain "stubs”, or "defaults”, couddpond to these queries without any specific
information regarding widgets being developed. Stedponses would look like the following:

Q1 - "Do you have any widgets?"

Al - "Yes, we have a number of widgets, would yika to see a listing, would you like informationcaib a
particular type of widget, or would you like to seer inventory?"

Q2 - "What kind of widgets do you have?"

A2 - "We have red, green and blue widgets. Would ljke a feature comparison chart or informatiooutb
a particular model?"

Q3 - "Widgets"

A3 - "Widgets are one of our products. They aredusemany industrial applications. We also manufeet
and sell flingys and gadgets."”

Q4 - "What products do you have?"

A4 - "We manufacture and sell widgets, flingys, ajadigets. Would you like to know more about any of
these, or are you interested in our inventory of @fthem."

Q5 - "What do you do?"

A5 - "l am glad you asked that. We are a small nfecturing company. We design and build the besgwid
ets, flingys and gadgets money can buy. Would ijk@rhore information on a particular product?"

Q6 - "Do penguins live here?"
A6 - "I'm sory, | do not understand what you medferen’t we just talking about our company’s prod@ct

10

Notice that all of the queries are a bit unspegditd that there are different types of responséiset
different types of queries. In query Q1, it is wwarl whether user 116 is seeking information abdtier
the organization produces widgets, what kind ofgeid, or whether user 116 wants to know how maay ar
in stock. The answer must be a combination of wiwatld be at a terminal domain and information aietdi
from the "Sales" 510 domain. In query Q2, the retjigereally for an enumeration of widget typeg, ibis
vague because what the user wants to know abogewgds unspecified. The response should provitie bo
the information requested and provide options feming that information. Query Q3 only mentions the
term "Widgets" itself, and so BOT 100 can only assuhat user 116 seeks to know more about widgets,
or maybe what role they play in the organizationefy Q4 is more general, in that it refers to afthe
products this company has. The response is, agairgnumeration of product types, and should look
similiar to the answer to query Q1. Query Q5 igaxiely general, but the response still enables 1iser
to provide a new query the will advance closerhe widget information sought. Finally, query 6 is
irrelevant to the current conversation. The respai®ws that BOT 100 is confused, but also attetopts
help user 116 by reminding user 116 about the pusviopic of conversation.

Domain Family Relationshipsand Topic Types

A function stub may return O or more different abjgalues. Similarly, there is variety in the typss
default responses BOT 100 can make. Unlike thetfoim stub, the robot can only say one thing ane t
Thus there is a need to have more than one tydefafilt associated with each domain. The number and
type of domain defaults is based on the concejméaimational relationships a domain has in the diom
hierarchy.

Figure 8 illustrates the family relationships foet"Products” 506 domain. There are three kinds of
relationships with respect to a domain: (1) it hasngle parent 802, (2) it has perhaps many gbl804,
and (3) it has perhaps many children 808. A donsgiarent represents the more abstract domain ahwhi
domain 806 is a component. The parent 802 to doB@#bris represented in Figure 8 with "Company"” 502.
A domain’s siblings share the same parent, andehthiesame level of abstraction, with the domaitién
hierarchy. A sibling 804 to domain 806 is represdrih Figure 8 with "Information” 504. The connecti
between domain 806, its parent 802, and its chl8 B shown with a solid line owing to the direct
relationships between them. The connection betwleaemain 806 and sibling 804 is shown as a dotte lin
because there is no direct connection betweenvibe Their relationship exists because they are both
components of parent 802. The other sibling domaimdd be "Services" 508 and "Sales" 510. A dongin’
children constitute the information categories tbamnprise the domain, as components. A child 808 of
domain 806 is represented in Figure 8 with "Flingy®4. The other children of domain 806 are "Wid{et
512 and "Gadgets" 516.

Domain family relationships are important in BOTOIecause they are directly associated with types
of queries and responses that can be made on airdofeere are three query/response types directly
associated with family relationships. A child queegponse is associated with queries that areaetdo
universe of discourse 300, unspecific, and basedamnain 806’s subcomponents. Queries Q2 and Q4
represent child queries, because the request enfameration of domain 806’s children. A siblingegu
response is associated with queries that are mlévainiverse of discourse 300, unspecific, argbtan
the domain 806’s definition or relationship tosiblings. Query Q3 represents a sibling query sihaely
mentions the domain. The response talks about thbatomain ("Widgets" 512) means and how it relates

11

to parent 802 with respect to its siblings. A parguery/response is associated with queries that ar
irrelevant to the previous query domain 806. Tyiycavhen a query hits a domain topic, the focus of
attention is set on that domain. When user 116 sgliery Q6 after having made query Q5, the focastis
on the domain topic that provided the Q5 resporsenamely "Products” 506. Since query Q6 is irratdv

to "Products" 506, the response informs user 186 BOT 100 is confused. In addition, the response
reminds user 116 what the last domain was, anghitsnt ("Company" 502, parent 802), so as to hedp t
user clarify the next query. Since the family quesgponse types provide information about the lonaif
domain 806 in domain hierarchy 500, they can bal s a navigational aid for assisting user 116 in
clarifying requests to BOT 100. This mechanisnstbatisfies one of the requirements of BOT 100gtesi

Figure 9 illustrates that family components and ifgrelated query/answer types are implemented
with three independent domain defaults. The chééadlt 902 focuses on domain children. The sibling
default 904 focuses on the domain siblings. Thematefault 904 focuses on the domain parent. Teget
the child, sibling, and parent defaults comprise ttomain defaults. Domain defaults are typically
implemented as standard topics, and so in bot dpu@nt they are called domain topics.

Domain topics (i.e., defaults) have an order otpdence based on the desire to ‘move’ user 116rclos
to a domain terminal, in which a standard topic lsamsed to fulfill their needs. Child 902 and isigl904
topics respond to relevent (i.e., in universe stdurse 300) utterances, so they have a higheegeace
than parent topics 906, which respond to irreleustierances. Child topics 902 preferred over siplopics
904 because they point downward, by talking aboutain children 808. These are most likely to bexdsk
and most likely to provide user 116 with appropriguidance. Sibling topics 904 are the next most
preferred, because they are still relevant, ang ik about domain siblings 804. Parent topics &@6the
least preferred, and point to the parent domain 882vill be disclosed below, the typical implemetian
mechanism will cause the domain topics to be exekcit a way that maintains this precedence ordering

(11 BOT IMPLEMENTATION

The operating environment that hosts the currertagiiment of the present invention uses Neurostwipt
implement BOT programs 108 and Neuroserver to implg BOT processor 100. It will appreciated by
those skilled in the art that implementations & ¢rrent invention need not be made using Neupisar
Neuroserver, and that other computational mechanisould be employed. Domain hierarchy 500 is
implemented with a file structure that mirrors tt@mains of hierarchy 500. This is typically donedase

of organization and maintanence purposes. Evenaitoim the hierarchy represents a directory bystdrae
name in the file system. Both default and non-détapics are implemented in files. Domain (i.eefallt)
topics are implemented in a file in the domain-nafinectory. Non-default topics are implemented filea

in domain terminals. Thus domain terminals have fites, one each for default and non-default topics
Domain (i.e., default) topics are implemented wiguroscript using standard topics 220. Standari¢gop
are also used to implement non-default responses ®esult, computational mechanisms are requiared t
distinguish and select between the two topic typesee such mechanisms, focus of attention, spayifi
and recency, have already been described. Tertapis will be more specific than any domain topics
Domains that are deeper in the hierarchy will beergpecific than domains higher in the hierarchy. |
addition, as will be disclosed below, child topiesl be more specific than sibling topics, whichliide
more specific than parent topics. These mechartisussvork in concert to satisfy the requirement8OfT
development. Below is a description of the impletagans of the child 902, sibling 904, and paredé 9

12

domain topics, followed by a description of implertsgion mechanisms used to maintain domain
hierarchies.

A.CHILD TOPICS

Child topics 902 are triggered by description at flaased queries to BOT 100. For example, if udér 1
makes query Q7, BOT 100 recognizes it as a degmriguestion, in that it basically asks for a dggimn

of what is available. Description questions canegelty be answered with an enumeration. If user 116
makes query Q8, BOT 100 recognizes it as a faquestion. Factual questions can generally be amslver
yes or no, but the response to query Q8 must liefasboth query types, so the yes answer is intphther
than explicit.

Q7 - "What educational programs do you have

A7 - "We have an employee reimbursement prograrddégree programs. We also have in-house training fo
non-degree certification programs."

Q8 - "Do you have an employee reimbursement progfdm

A8 - "We have an employee reimbursement prograrddégree programs. We also have in-house training fo
non-degree certification programs."

In Neuroscript, fact and description question typage parsed using ?FactQuestion and
?DescriptionQuestion, respectively. In queries @@ @8 the child topic 902 responds. In both cabes,
guestion is unspecific, because user 116 doegiabgtask for information on a specific program, &o
terminal standard topic cannot respond. But BOT dfi® help user 116 out, by elaborating what kirfds o
educational programs the company has. User 118®arclarify their request, and BOT 100 doesn’t look
stupid. The following is an example illustratingetNeuroscript for an "Education” child topic thadwid
respond to queries such as Q7 and Q8:

Topi ¢ "Random description or fact question about Education" is
Subj ects "Education”;
If (?DescriptionQuestion contains DOM EDUCATI ON) or
(?Fact Questi on contai ns DOM _EDUCATI ON)

Then
SayToConsol e "Trace -- Education, A answer";
Exanpl e "what ki nd of ducks swimin Education pool ?";
Say "Tal k about Education and, in particular, " +
"with respect to the children: Science Engi neering Business"
Done
EndTopi ¢

The specificity of the topic is based on the coreHirspecificity of ?DescriptionQuestion and
?FactQuestion. Note that the subject of the tdfiducation", is the same as the domain 806 name. Th
pattern list (as described in the background setidOM_EDUCATION, is initially implemented with a
single element by the name of domain 806. DuringTBIDO development, DOM_EDUCATION is
extended to include synonyms for education, sucttraming.” Domain pattern lists must be carefully
implemented so that domains don't clash, sincehelsseduce the ability of BOT 100 to answer queries

with the correct domain topic.

13

14

B. SIBLING TOPICS

Sibling topics 904 are triggered by direct refebased queries to BOT 100. For example, if usér 11
makes a query such as Q9 or Q10, BOT 100 recogitiass direct reference to domain 806 and respond
in two ways: (1) pseudo definition, and (2) infotioa about siblings, as exemplified by the respaiese
queries Q9 and Q10.

Q9 - "Education

A9 - "We have degree and certification educatigagnagrams here. We also have stock participatioaltine
insurance, paid holidays and retirement benefitefoployees."

Q10 - "Does employee education play a role in adearent at your company?"

A10 - "We have degree and certification educatigmagrams here. We also have stock participatiealth
insurance, paid holidays and retirement benefitefoployees."

The idea of the sibling topic 904 is that user h&6 mentioned domain 806 by nhame. In some cases, as
in query Q9, perhaps only the domain name is peaVid the query. In other cases, such as in quéf; Q
the query may be complex, but the only thing recxasie by BOT 100 is the direct reference. BOT 100
cannot be expected to direct user 116 downwardwbat it can do is provide a little information aibo
domain 806, and to provide user 116 with some médion about how domain 806 fits into the parent
domain 802 by talking about its sibling domains .8DHe response to query Q9 indicates that, if Ggér
is confused, providing some information about hauaation fits into the company’s benefits programs
might help them to restate their query with greatarity. Also notice, in the response to query hat a
direct reference can lead to inappropriate resgonse

Topi c "User nmentions Education, by itself" is
Subj ects "Education";
I f Heard DOM_EDUCATI ON

t hen
Exanpl e "Education”;
SayToConsol e "trace -- Education, B answer";
Say "We have educational support for enployees wishing to, " +
"further their professional growh in degree-granting " +
"prograns. W also have training prograns that lead to " +
"certification rather than degree objectives."
Done
EndTopi ¢

Once again, it is clear from the Neuroscript of $itding topic 904 that the domain 806 name is the
subject of the topic. In Neuroscript, direct referes are parsed using the "If Heard" mechanisnthdn
sibling topic, the "If Heard" mechanism is appliedthe domain pattern list, DOM_EDUCATION. "If
Heard" is also less specific than either "?Desiony@puestion” or "?FactQuestion", so the siblingicap
less likely to be selected than the child topid, being more general, it is more likely to matcrekevant
utterance.

15

C. PARENT TOPICS

Parent topics 906 are triggered by queries to BOQ that have nothing to do with the current foctis o
attention. For example, if user 116 previously madgiery about education, then education is cuyrére
focus of attention. If user 116 then makes a qsach as Q11, BOT 100 recognizes that the subjebieof
query isn’'t education, and so is irrelevant. Whes query is irrelevant, the parent topic 906 redppas
shown in the response to query Q11 below:

Q11 - 'Can | paraglide off the cliff in your back yard?

Al11 - "l am confused, what you have said is eitbercomplicated for me to understand, or | canretthe
relationship to our last topic, which was Educatiorservices."

There are any number of possibilities of why usks’d current query is unrecognizable, and BOT 100
simply isn’t smart enough to decide what to do.slish, parent topic 906 tells user 116 that it dbesn
understand what the user said, and reminds usethhiéhe last topic of conversation was aboutesrr
domain 806, but focuses the discussion on the pdmmain 802.

Topic "We are baffled, but the last topic was Education" is
Subj ects "Education";

| f Focused
Then
SayToConsol e "Trace -- Education, C response"
When Focused Exanple "Do you go sl edding on w nter nornings?"
Say "I am confused, what you have said is either too conplicated " +
"for me to understand, or | cannot see the relationship to " +

"our |last topic, which was Education or Services."
Focus Subjects "Services";
Done
EndTopi ¢

In this final example, it is seen that domain 8@éne is again the topic subject, though it is n@érn
associated with the test or the example. Domaini8@&ain referenced in the response, along with th
parent domain 802, but the parent domain 802 is@dal the focus list. In cases of non-relevanceh s1s
query Q11 above, it is important to show user haBOT 100 isn’t giving up on them, and so theckiag
up" response is viable.

Domain topics perform the same task for every dard&i6 in domain hierarchy 500, so the structure
of the each of the three domain topics is idengoalept that the domain 806 name changes from topic
topic. In the current implementation of the art,itmative process is used for creating and maiingi
domain topics.

D. DOMAIN INTERACTIONS

16

The connectivity in a domain hierarchy 500 resintster-domain interactions which affect domaipito
content. Two such interactions are important ten() changes to the number of domains 806 iratday
500, and (2) interactions between the domain 8@6asaacross major branches of hierarchy 500.

Domain Hierarchy Content Changes

The structure of domain hierarchy 500 imposes reguénts on the content of domain topics when family
members change. The normal development of BOTs#@6 three types of change: (1) add domain 806 to
hierarchy 500, (2) remove domain 806 from hierars@§, and (3) cauterize domain 806 in hierarchy. 500
In the first two cases, the number of componentieuparent 802 changes, and this changes thetopild

902 and sibling topic 904 say statements. For exanip Figure 5, if two new domains are added under
"Services" 508, called "Education” and "Trainintiien the child topic 902 for Services domain 50&mu
be edited to include the "Education" and "Trainiigmains. In addition, the "Education” domain sili
topic 904 has to be edited to include the "Traihibgmain, and vice versa.

Domain Cauterization

Two scenarios exist wherein domain hierarchy 500niable to provide accurate support in universe of
discourse 300. The first scenario is when BOT adbtrator 122 chooses to restrict the universe of
discourse with respect to a more generic domaimariby. For example, in hierarchy 500, BOT
administrator 122 may choose to disable the dordaiiaults for the "Services" 508 domain without
changing the structure of hierarchy 500. The sesmedario is when BOT administrator 122 chooses not
to restrict the universe of discourse, but theda@velopment for a domain subtree (all domainsvbel
particular domain) is incomplete. Using the samengple above, during BOT 100 testing, perhaps sdme o
the non-default topics under "Services" 508 areonmglete, so rather than have BOT 100 respond
incoherently, BOT administrator 122 again disaltihessubtree.

Figure 10 depicts a "cauterization", which is tipemtion performed in both scenarios. A cautedrati
recursively replaces the domain topic say statesneith a single statement that refers back to tiue r
domain in the cauterization. In this example, theterization subtree is shown as a shadowed tgang|

Figure 11 shows that each domain topic inside tealewed triangle refers back to the "Products”
domain. "Products" domain 506 is being cauterizedit is called the "cauterization root" domain.eTh
cauterization say statement is basically the samegich topic type inside the triangle, and willllustrated
with a child topic 902 for the "Widgets" 512 domain

Topi ¢ "Random description or fact question about Wdgets" is
Subj ects "W dgets";
If (?DescriptionQuestion contains DOM W DGETS) or
(?Fact Questi on contai ns DOM W DGETS)
Then

17

SayToConsol e "Trace -- Wdgets, A answer";
Exanpl e "what ki nd of ducks swimin Wdgets pool ?"
Say "I'm not trained to talk about Products at this " +
"time, sorry.";
Done
EndTopi ¢

Regardless of which domain topic in the cauter@atioot’'s subtree matches user 116’s query, the
response should be the same. They all point badRraxucts" 506.

Figure 12 depicts domain 806’s family members #nataffected by a cauterization. When one or more
of many child domains 806 under a parent 802 isecened, then the parent topic 906 must be modifed
remove the domain names from the child topic 90@, ® remove the domain name as a sibling in the
sibling topic 904. In the current implementationtbé art, domain cauterization can automatically be
performed, reversed, and reperformed using a diftecauterization root domain, over an over again,
without adversely affecting the coherence and ooit of the hierarchy.

Domain Tiebreakers

There is a certain degree of redundancy in any-gkedigned domain hierarchy. Many instances cae aris
in the development of hierarchy 500 where domapictsubjects and pattern lists in different hiehgrc
branches "clash," meaning that they will contaie on more of the same values. In Neuroscript, onky
topic can respond at a time, so only one of perlmpry clashing topics will have its say statement
executed. In cases where domain clashes are igelntfOT 100 should be designed to implement what i
termed in the art as a "tiebreaker." The tiebrea&directs control to a sequence topic 240. Theemoe
topic directs user 116 to select from the differgubjects possible, the content for which comesn ftioe
say statements of the affected topics.

Figure 13 illustrates an example tiebreaker scenatween two domains relating to "Sales," one of
which is a component of the "Information" subtredjle the other is a component in the "Sales" sgbtr
In each case the meaning of "Sales" is slightlfedint, but BOT 100 would match on the word “sales”
and so "sales" would be a member of each of thenpdists for topics in these domains. The sege¢gic
informs user 116 that BOT 100 knows about “Salesd number of contexts, and asks user 116 to select
one and continue. This way, it becomes clear ti@&f B0O recognizes that user 116 is making a general
query but perhaps isn't aware that the query carepgonded to in different ways. The sequence tigpic
intended to help user 116 obtain an answer to tlegygwithout making assumptions as to which of the
domains the query references. The say statemettis iiebreaker are typically copied from the claitdd
sibling domain topics (902 and 904) directly, thbubey need not be. The following Neuroscript shows
how the domain tiebreaker for a child topic is ierpknted.

Topic "Tiebreaker A for PatternlList SALES" is
Subj ects "Information Sal es", "Conpany Sal es";
I f Heard "sal e#"

18

Then
Swi tchTo "Sequence Ti ebreaker A for PatternList Sales"
Done
EndTopi ¢

Sequence Topic "Sequence Ti ebreaker A for PatternList Sales" is
Al ways
SayToConsol e "Trace -- Sal es Ti ebreaker, A sequence answer";
Say "I know about <I>Information</I> Sales and <l >Conpany</I|> " +
"Sal es. Wiich would you like to know nore about ?"

Wi t For Response;
I f Heard DOM_| NFORMATI ON

Then
SayToConsol e "Trace -- Sal es Ti ebreaker, A information answer"”;
Say "I can tell you about what our overall sales were, what our " +

"sal es per product type were, and what our sales for " +
"particul ar products were.";
Focus Subj ects "FlI NANCI ALSALES"

Done
| f Heard OUTREACH
Then
SayToConsol e "Trace -- Sal es Ti ebreaker, A outreach answer";
Say "I can tell you about things |ike how our sal es departnent " +

"wor ks, and what they have in mnd for the future.";
Focus Subj ects "OUTREACHSALES";

Done

O herwi se Al ways

SayToConsol e "Trace -- Sal es Ti ebreaker, A otherw se always answer";

Say "I thought we were tal ki ng about sales, but anyway..."
I nt errupt Sequence;

Done

Swi t chBack
EndTopi ¢

The first thing to notice in the tiebreaker is thatlways has multiple subjects, whereas in otbpics
it is possible, but not necessary, to have multflbjects. Second, the recognition mechanism fer th
tiebreaker is an "If Heard" mechanism. If executaahtrol is switched to the sequence topic. Theisege
topic requests user 116 to select between thelasbiog subjects and waits for user 116’s respdhaser
116 selects one of the pattern lists, then theorespis taken from the associated domain’s topiod that
domain’s subject is focuses. If neither of the grattlists is heard, then a tiebreaker defaultdadd as a
response and the sequence is terminated.

V. THE PROCESSOF IMPLEMENTING A HIERARCHY-BASED BOT

1. Create a hierarchical description of the orgaiunsbeing modeled
2. Create a file system architecture that mirroesdbmain hierarchy
3. Create domain topics for the hierarchy

4. Create domain pattern lists for the hierarchy

5. Perform any necessary cauterizations

6. Create any necessary tiebreakers

7. Proceed with standard topic development in dorteaiminals

8. Develop standard topic pattern lists

9. Cauterize/uncauterize as necessary
CLAIMS

1.

2.

3.

4.

5.

ABSTRACT 57

19

