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Abstract

The symbolic and subsymbolic paradigms each offeaatages and disadvantages in con-
structing models for understanding the processesgfition. A number of research pro-
grams at UCLA utilize connectionist modeling stgas, ranging from distributed and
localist spreading-activation networks to semamgiwvorks with symbolic marker passing.
As a way of combining and optimizing the advantagfésred by different paradigms, we
have started to explore hybrid networks, i.e. rplétprocessing mechanisms operating on
a single network, or multiple networks operatingamallel under different paradigms. Un-
fortunately, existing tools do not allow the sintida of these types of hybrid connectionist
architectures. To address this problem, we haveldeed a tool which enables us to create
and operate these types of networks in a flexibtegeneral way. We present and describe
the architecture and use of Descartes, a simulatiwimonment developed to accomplish
this type of integration.

Introduction and Motivation

Within the connectionist approach there are theeagigms, each having its own advantages and
disadvantages: Distributed Connectionist NetwoEXSs), Localist Connectionist Networks
(LCNSs), and Marker-Passing Networks (MPNSs).

DCNs (such as the models in [Rumelhart & McClellat®B6]) use simple, neuron-like processing
elements which represent knowledge as distribusdtgms of activation. DCNs, sometimes
known asParallel Distributed Processingr subsymbolienodels, are interesting because they
have learning rules that allow stochastic categeryeralization, they perform noise-resistant as-
sociative retrieval, and they exhibit robustnesdamage. Distributed models, however, have (so
far) been sequential at the knowledge level, lagkioth the structure needed to handle complex
conceptual relationships and the ability to hamlyieamic variable bindings and to compute rules.

LCNs (as exemplified by the models of [Waltz & Rak, 1985] and [Shastri, 1988]) also use sim-
ple, neuron-like processing elements with numestozation and output functions, but represent
knowledge using semantic networks of conceptuaés@uhd their interconnections. Unlike
DCNs, localist networks are parallel at the knowketevel and have structural relationships be-
tween concepts built into the connectivity of tledwork. Unfortunately, they lack the powerful
learning and generalization capabilities of DCNkey also have had difficulty with dynamic vari-
able bindings and most other capabilities of symnchabdels.

MPNs (as exemplified by the models of [Charnial@@]%nd [Hendler, 1988]) also represent
knowledge in semantic networks and retain parahiekt the knowledge level. Instead of spread-
ing numeric activation values, MPNs propagate sylialoarkers, and so support the variable
binding necessary for rule application, while preswy the full power of symbolic systems. On
the other hand, they do not possess the learnpapdaies of DCNs or exhibit the inherent evi-
dential constraint-satisfaction capabilities of LEEN



Hybrid Connectionist Models

Research at UCLA has spanned the range from sulmignie» symbolic connectionist models
[Dyer, 1989]. A number of us have begun to cormsthybrid architectures which use what we
term Multiple Interacting Networks, or MINs, hetgemeous connectionist networks that commu-
nicate via shared elements. A neurophysiologiocpt@ach [Nenov & Dyer, 1988] effectively uses
MINSs for visual/verbal association by modeling metgeneous neuronal characteristics in separate
networks. We have also been exploring the useldisMor higher cognitive tasks, such as plan-
ning, creativity, story invention, and politicalgaiations. In political negotiations research, fo
instance, MINs are used to simulate the multiplsjpectives of negotiating parties.

Another approach is to build models that combirmeditttom-up processing features of DCNs with
the top-down processing features of LCNs and MPRgure 1 showsliding Pot, an example
wherein elements from each paradigm are combinied 0WINs. This allows us to approach a
problem that would be difficult, if not impossiblesing a single paradignHiding Pot shows a
simplified network built to understand the senteridehn put the pot inside the dishwasher be-
cause the police were cominJgNetwork-A in Figure 1 utilizes an MPN to do role-binding amd
LCN to activate and combine evidence for individsithemas. These then combine their func-
tionality to support predictions and perform infeceng and disambiguation.

One might also want to combine different connedsibapproaches by having separate networks
that communicate with each other, where each orferpes a different cognitive taskietwork-B

in Figure 1 is a DCN, trained to recognize wordsrfrline segments [McClelland & Rumelhart,
1986, chap. 1]. By integrating these two approschve can simulate cognitive processes at the
different levels of abstraction necessary for mimdgteading and understanding.

Network-A interacts withNetwork-B throughshared lexical nodes. Once a word has been recog-
nized, it passes activation to the concepts relatdioe word. For example, the node for concept
John gets activation from the word notjehn” which is shared by both networks. Activation then
B_ropagates along the chain of related conceptseimétwork as contextual evidence for disam-

iguation. Markers are passed over the role nadexss marker passing links between corre-
sponding roles to represent role-bindings and pertbe needed inferencing.

While there are several existing connectionist $aaus, none allows the simulation of multiple
interacting hybrid networks, as khiding Pot, that integrate elements from more than one para-
digm of connectionist modelling. We have develoffeiDescartes simulation environment spe-
cifically to address this kind of integration. [@asgtes enables researchers to design, simulate, and
debug hybrid connectionist architectures that comlelements of distributed, localist, and mark-
er-passing networks.

Descartes Architecture

Descartes is a package designed for simulatingarktprocessing, network interaction, and inte-
gration of networks into an overall processing emvnent. The system consists of two interactive
components: networdementssuch as nodes and links, their associationstheidfunctionality,
andprocessing controlletsvhich organize network elements and coordinai gfrocessing. The
components of this architecture, as applieHiing Pot, are shown in Figure 2.

1'The inferencing and frame selection needed to wtaled sentences suchriisling Pot is explained more thor-
oughly in [Lange & Dyer, 1989a] and [Lange & Dy&889b], which describe Robin, a model of high-lenétr-
encing using an LCN without marker-passing.
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Figurel: The sentenc&ohn put the pot in the dishwasher because thiegulere coming.lllustrates the util-
ity of integrating semantic networkidtwork-A) and distributed networkslétwork-B). The darkest area rep-
resents the most highly-activated set of nodeessmting the network’s plan/goal analysis of titesee.
Not all markers are shown. Location role nodesathdr parts of the network are also not displayed.

Processing Controllers

When Descartes is loaded and running, the reqph@zessing controllers areraeta-controllefa
supervisor for all elements and sub-controllers@néin the run-time system) and at leastroate
work controller(a supervisor for an individual network and itsreénts). The architecture de-



scribed in Figure 2, and implementedHiding Pot, is controlled by a meta-controlleviéta-
Control) which coordinates the two network&fwork-A andNetwork-B). Each of these networks
has a local network controller which coordinatesphocessing of its elements. In this case the
controller forNetwork-A is of classSA/MP-Control, which combines both spreading-activation and
marker-passing functionality.
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nodes

nodes

Transfer-Inside”Actor

(Simple-SA/MP-Node) <hidden units>

e “pot” (PDP-Nodes)

(PDP-Node)

“pot"
(PDP-Node)

Human
(Simple-SA-Node)
"john"
(PDP-Node)

Marijuana
(Simple-SA-Node)

"john" =——
(PDP-Node)
<input feature units>

Transfer-Inside (PDP-Nodes)

(Simple-SA-Node)

Figure2: Descartes Processing Architecture appligdiding Pot. Shown in each network are a few of their
nodes, with the class of each node being declarpdrientheses below their names. PDP-Nga#$sand
"“john" are shared by both networks.

Network Elements

The nodes shown ididing Pot are illustrative of the kinds of nodes providethia system. Three
of Descartes's predefined node classes are uséidiimg Pot: (1) Simple-SA-Node, used irHid-
ing Pot for conceptual elements, suchHagnan andTransfer-Inside, (2) Simple-SA/MP-Node,
used for roles, such @sansfer-Inside™Actor, and (3PDP-Node, used for feature detectionntet-
work-B, such as the node representing lexical empwy’. Figure 3 provides an example of node
creation in Descartes.

Simple-SA-Node is a basic class of spreading-activation nodels @afault activation and output
functions. Simple-SA/MP-Node is another standard node class, which combinefitttionality
of Simple-SA-Node with that required for marker passing. FinallpP-Node is the simplest class
of DCN-type nodes — S|Ioread|ng-activation nodes adify the weights on their input links by
backpropagation [Rumelhaet al, 1986, chap. 8].

Many other common node and link types are predéfingth a variety of activation, threshold,
and output functions. More complicated classesm® available, including gated nodes and
links, along with more neurally-realistic nodesttbemmunicate via output spikes, such as the ar-
tificial neural oscillators of [Vidal & Haggerty 9B7]. The functionality of Descartes objects can
easily be extended by combining the default cla$sitions of the object hierarchy with user-de-
fined modifications, a process described in [Laegal, 1989].



(Si npl e- SA- Node Transfer-Inside :in-links (SA-Link ("put" 0.75)
(I'nside 1. 00)
(Transfer-1nside*Actor 0.50)
(Transfer-Insi de®Ohj 0. 50)
(Transfer-Inside™Loc 0.50)))

(Si npl e- SA/ MP- Node Transfer-InsiderActor :in-links (SA-Link (Transfer-Inside
1.0))
(MP-Li nk I nside~Pl anner))

Figure 3: Creation ofTransfer-Inside andTransfer-Inside”Actor nodes, with forward-referencing.

Structured Networks

Some connectionist models have a consistent steubatween groups of nodes in the network. In
a semantic network, for example, a node represgthim head of a frame might always be con-
nected via a certain type of link to each of itespwhich in turn might always have a node for
their fillers. Groups of nodes forming winner-takiénetworks are always completely intercon-
nected with constant inhibitory weights. Rathertforce the user to repetitively define all nodes
and connections for each such structured groupcdtes has a facility that allows the pro-
grammer to optionally define a structured growingtimod for each node class. A node's growth
method automatically creates the node's expeatectsted incoming and outgoing nodes and
connections. This feature allows knowledge basaitlens to act as keys for network creation
rather than as exhaustive listings of the netwardes and their connectivity.

Simulation in DESCARTES

Once the networks have been designed and builtsiiestarts the simulation by (1) optionally
defining the cycling, termination, and display sewce for each network, (2) initializing the meta-
controller to clear out all activation and marké8),activating or marking the desired nodes, and
(4) starting the cycling sequence and specifyimgrihmber of global cycles to run. An example
of this process is shown in Figure 4, but for a clatgpdescription see [Lange al, 1989].

Figure 4 shows the initial activation and markersdesl to process the phrasehn put the pot
inside the dishwasher.The firstdefine-cycling command in the figure specifies that the meta-con-
troller spread activation iNetwork-A once per global cycle, while only passing markerse per
every three global cycles. Both activation andkaes will cycle until stability, their default ter-
mination condition. For analysis of the networ&&ivity, the user has defined that a trace of the
markers’ propagation be shown and that the stdtilemodes be displayed every ten cycles. The
secondiefine-cycling command defines thaetwork-B is not to be cycled in this example.

In general, the networks' cycling sequences negdbanset once per session (if at all), although
all sequencing and displaying parameters may lspeeified in mid-simulation. Activations and
markers of nodes may be changed at any time. yi¢ieng sequence is further described below.

The Simulation Cycle

As shown, Descartes is designed in such a wayh#tatorks can be cycled in parallel or serially.
The meta-controller provides for timing coordinatizetween the networks. Networks cycled in
parallel behave as if they were a single net, ¢lrengh they need not operate at the same fre-
quency, or, in fact, with the same functionaliy particular model may have a network of in-
hibitory nodes cycling at a faster rate than a petvef excitatory nodes with which it interacts, at
the same time as symbolic markers are being passgdach, and backpropagation is being per-
formed within sub-networks of the model. With skeicling, one network may wait until another
network completes a specified number of cyclesacihes stability before starting to cycle itself.



(define-cycling %\etwork-A :sa-cycl e-every 1 (D)
:mar ker-cycl e-every 3

:marker-trace T

:di spl ay-every 10)
(define-cycling %\etwork-B :sa-cycl e-every NI L)
(init neta-control) i (2)
(cl anmp-activation % put"” 1.0) iy (3)

(mark %ransfer-I|nsi de*Actor (marker %ohn))

(mar k 9% ansfer- | nsi de*oj (mar ker %Cooki ng- Pot )
(mar ker %varijuana))

(mark %ransfer-Inside*Loc (mar ker %O shwasher))

(cycle 50) v (4)
Figure4: An example of the Descartes control language.

Each global network cycle is comprised of four steft) determination of which networks need
to be cycled, (2) update of active nodes in thdimgaetworks, (3) spread from active nodes in
the cycling networks to their out-links, and (4poet any requested output.

Deter mining Active Networks: The meta-controller determines which of the neksan
the system need to be cycled in parallel on thergeycle, according to defaults and any
define-cycling commands. In Figure 4, spreading-activation nod@&&twork-A will be
cycled on every global cycle, while marker-passinges will be cycled only on global
cycles 1, 4, 7, and so on, until termination (SiAi

Update: Each active node in the cycling networks quatgescoming links for new acti-
vation and/or markers. Spreading-activation na@désulate their new activation by ap-
plying their activation function, while marker-paggnodes store any new markers they
have received.

Spread-To-Out-Links. Each active node in the cycling networks cal@dats output (ei-
ther activation or markers) and sends it to itgoing links. The output of spreading-
activation nodes is calculated by applying thetpatifunction, while the output of mark-
er-passing nodes is generally their new markers.

Report Output: The final step of a cycle entails querying thelicyg networks for results.
Each network controller can optionally display st&tus of important nodes at specified
cycles (Network-A's status will be displayed every 10 cycles in Fégd) or trace new ac-
tivation and/or markers. Descartes currently hasrmaber of output options useful for
system design and debugging.

Implementation and Simulator Access

Descartes has been designed for portability, fletyiband simplicity of use. Portability is
achieved via the use of CommonLisp, the ANSI Lisgmdard. Flexibility is augmented by the use
of the CommonLisp Object System, Clos, whose hodiaal class structure provides inheritance
which enables users to utilize pre-defined funa@latasses to customize their own semantics. A
complete description of currently available funofbty and test-bed cases can be found in [Lange
et al, 1989]. The largest test case simulated to dad@ implementation of a Robin [Lange &
Dyer, 1989b] network in the domainldfding Pot. It consists of two interacting LCNSs built from
four node classes and five link classes, with @l wit12,400 nodes

and 40,000 links.

Descartes's control language is simple and effectimabling the designer to easily set up and test
different network configurations using either pefided or user-defined elements. At the same



time, the system has been designed with easewbrietiebugging in mind, with history and out-
put facilities that offer researchers valuable rmad#hfor interpreting network behavior.

Descartes will be made available to all interesigelrs. Enquiries about access to the simulator
should be sent to DESCARTES@CS.UCLA.EDU.

Related Work

Some of the recent tools constructed for buildind simulating connectionist architectures are
(1) the Rochester Connectionist Simulator (RCS) [@zodet al, 1987], (2) the PDP Software
Package [McClelland & Rumelhart, 1988], (3) Mirrékr$D'Autrechy et al, 1988], and

(4) Genesis [Wilsort al, 1988]. RCS is a spreading-activation simulatbrclv allows units to
have any amount of associated data. There isewfgation language for construction of the net,
but the system provides a library of commonly usetivork structures and units. The PDP Soft-
ware package includes a number of programs forlaiing the DCN models in [Rumelhart & Mc-
Clelland, 1986]. Mirrors/ll and Genesis, the mestent of the four systems, have both features:
a high level non-procedural language for netwonkstauction and an indexed library of common-
ly used networks. Both have more sophisticatedfl@xtle control mechanisms than RCS and
the PDP Software Package, with Mirrors/ll emphagjgimulations using LCNs and Genesis em-
phasizing realistic, biologically-based models.

The flexibility and symbolic capabilities affordegt Descartes' object-oriented implementation in
CommonLisp and Clos comes at a small expense uiaiion speed in comparison to the C-based
implementations of RCS, the PDP package, and Gené&sie only case where the difference in
speed should be significant, however, is in sinalekpropagation networks requiring thousands
of learning epochs, for which the PDP package nhghhore appropriate. Except for Genesis, all
of the above-mentioned simulators are geared tomanbtonic distributed or localist spreading-
activation networks. None of them have the conogpybrid multiple interactive networks as part
of their design, especially those which can pasg®yic markers.

Conclusions

We have presented a development tool, DESCARTE&witovides researchers with the capa-
bility to combine Distributed Connectionist Netwsrk ocalist Connectionist Networks and Mark-
er-Passing Networks within a single simulation emwnent. The most important theoretical
contribution of DESCARTES is the concept of Muléiphteractive Networks with intra- and inter-
network heterogeneity. As a tool, it providesrape, portable, and versatile environment for de-
signing and testing different cognitive models. Séneapabilities make DESCARTES a unique
and powerful tool for researchers in Artificial éfiigence, Cognitive Modelling, and Connection-
ism.
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